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ABSTRACT

While existing monocular depth estimation methods have achieved commendable performance, they often fall
short in accurately distinguishing object boundaries. This deficiency largely stems from the inherent noise
in dataset acquisition, such as unclear edges and missing depth information. To address these challenges,
this paper introduces a novel, high-quality, data-driven monocular depth estimation method tailored for
autonomous driving. The approach significantly enhances depth predictions with clearer object boundaries
and reduced noise, making it well-suited for real-time, safety-critical applications.

Central to our approach is the Self-Adaptive Consistency Filtering mechanism, which dynamically selects
high-quality training samples, ensuring that the model learns from the most reliable data and reducing the
impact of noise. Additionally, we introduce a Dual-Prior Learning strategy that combines geometric and
semantic edge priors. Unlike traditional methods that rely solely on raw depth maps, our approach enhances
boundary detection by providing detailed guidance on object contours. This leads to more accurate depth
estimation, especially in complex regions where other methods struggle. Empirical evaluations on popular
benchmark datasets show that our approach leads to performance improvements of 1.2% on the autonomous
driving dataset KITTI and 1.8% on the indoor scene dataset NYU. Compared with recent state-of-the-art
methods such as DPT and NewCRFs, our approach achieves superior performance, particularly in recovering
fine object boundaries and maintaining spatial consistency across diverse scenes. These results highlight the
strong generalization ability of our method, demonstrating that it can enhance depth estimation quality across
diverse environments — improving edge precision and spatial coherence, which are critical for autonomous
vehicles navigating both complex and dynamic scenarios.

1. Introduction

and varying texture patterns, where current models tend to produce
over-smoothed depth predictions and fail to delineate object edges

Monocular depth estimation is a fundamental task in computer vi-
sion with wide-ranging applications such as autonomous driving (Wang
et al,, 2023a; Liang et al.,, 2023; Jiang et al.,, 2023), and virtual/
augmented reality (Li et al., 2020). It aims to infer dense depth informa-
tion from a single image, which is an inherently challenging problem
due to the absence of stereo cues. Recent advances (Zhang et al., 2023;
Bae et al., 2023) have seen significant progress in this field, primarily
driven by the development of deep learning models and the availability
of large-scale datasets. Nevertheless, despite the commendable perfor-
mance achieved by existing methods, accurately distinguishing object
boundaries remains a persistent issue. This problem becomes partic-
ularly evident in complex scenes with intricate geometric structures
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precisely.

The core reason behind this shortcoming can be traced back to the
quality of the training data. In practice, most publicly available depth
datasets such as KITTI (Geiger et al., 2013) and NYU (Silberman et al.,
2012) are either captured using active sensors such as LiDAR or gener-
ated through stereo vision techniques. Although effective in providing
dense depth annotations, these approaches are often undermined by
noise and inconsistencies. For instance, sensors may produce unclear
edges, especially for small or distant objects, and may fail to capture
depth accurately in reflective or transparent regions. As a result, the
learning process becomes susceptible to erroneous supervision, limiting
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Fig. 1. In monocular depth estimation, while existing single-label training approaches (A) use all training samples as input, and ground-truth depth maps as
the sole supervision signal, multi-modality learning (B) is employed to enhance the accuracy and robustness of depth estimation by utilizing diverse input data.
However, they often fall short in accurately distinguishing object boundaries. In contrast, our novel high-quality data-driven methodology (C) enhances the overall
performance of depth estimation, especially in generating sharp depth edges, by selecting high-quality “valuable” data in training samples and incorporating two

priors for additional guidance.

the model’s ability to capture sharp object boundaries and leading
to blurred depth transitions (Fig. 1-A). Such noisy labels not only
hamper the representational power of deep models but also introduce
ambiguities that degrade the overall prediction quality.

Specifically, we point out that blurred depth edges introduce a
form of “supervision uncertainty”, where the same visual contour may
exhibit inconsistent depth gradients across different training samples.
This inconsistency disturbs the model’s convergence path and results
in unstable boundary predictions. Moreover, missing depth values —
commonly found near transparent surfaces, reflective objects, or dis-
tant regions — lead to incomplete spatial information. This breaks the
geometric continuity of the scene, undermining the model’s ability to
learn contextual depth relationships. Prolonged exposure to such noisy
supervision encourages the network to overfit to unreliable texture
cues and results in feature confusion, ultimately degrading the model’s
generalization capacity — especially in scenes with complex structures
or occlusions.

To mitigate these issues, recent studies have explored various strate-
gies, such as improving network architectures (Chen et al., 2023b;
Zhuang et al.,, 2023) or introducing additional supervision signals,
e.g., resorting multi-modality learning (Xu et al., 2023; Khan et al.,
2021) (Fig. 1-B). However, these approaches predominantly focus on
optimizing model capacity without sufficiently addressing the underly-
ing data quality problem. Simply increasing model complexity cannot

compensate for suboptimal training data, as the network may continue
to overfit to unreliable samples, leading to poor generalization and
coarse boundary localization. Thus, a more effective solution should
involve refining the training data to ensure that the model learns from
high-quality, reliable examples while minimizing the adverse impact of
ambiguous samples.

In this work, we propose a novel high-quality data-driven monoc-
ular depth estimation method called SharpEdge that addresses these
challenges by enhancing both data quality and boundary precision (Fig.
1-C). The core of our approach is the self-adaptive consistency filtering
(SACF) mechanism, a dynamic data selection technique designed to
automatically evaluate and filter out low-quality samples during the
training process. Unlike traditional hard-threshold filtering methods
that rely on fixed criteria, SACF dynamically assigns a “value” to each
training sample based on its consistency and informativeness, allowing
the model to focus on the most reliable data. By progressively refining
the training set, SACF ensures that the network learns from high-
quality examples, thereby improving its robustness against noise and
ambiguities.

In addition to data quality enhancement, we introduce a dual-prior
learning (DPL) strategy to improve boundary precision further. Conven-
tional depth estimation methods (Xiang et al., 2024; Cui et al., 2024)
often employ single-label supervision, typically using raw depth maps
or edge detectors, which capture abrupt intensity changes but often fail
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to represent complex structures and context accurately, leading to noisy
or fragmented boundaries. This limitation is particularly detrimental
in scenes with occlusions or regions where depth variations are subtle
but crucial for accurate perception. Our DPL approach addresses these
challenges by incorporating two distinct yet complementary types of
boundary information: gradient clues and saliency clues. (1) The gra-
dient clues act as a geometric prior that captures fine structural details
by focusing on pixel-wise changes in depth values. Unlike conventional
edge cues, gradient clues provide a continuous representation of the un-
derlying geometric structure, enabling the model to recognize nuanced
depth variations and smoothly transition between object boundaries.
This continuous nature makes gradient clues more resilient to noise
and better suited for modeling complex depth changes than binary edge
labels, often resulting in hard boundaries that lack interpretative depth
cues. (2) The saliency clues, on the other hand, serve as a semantic
prior that highlights visually essential regions in the image, such as
prominent object boundaries and critical structural elements. Saliency
maps encode high-level contextual information, allowing the model to
focus on perceptually meaningful edges rather than being distracted by
texture patterns or background clutter. By emphasizing semantically
relevant regions, the model gains a better understanding of object
contours, enabling it to distinguish between true object boundaries
and misleading textures that traditional edge cues might erroneously
capture. By combining these complementary priors, DPL provides more
accurate and context-aware guidance, resulting in clearer and more
precise depth predictions.

By integrating high-quality data selection with dual-prior guidance,
our method significantly improves the clarity and precision of monocu-
lar depth estimations, particularly in challenging scenarios where con-
ventional approaches struggle. Extensive experimental results demon-
strate that our model achieves state-of-the-art performance on standard
benchmarks and exhibits superior boundary delineation and robustness
against noisy data, making it well-suited for practical applications in
complex visual environments.

The main contributions of this work are then summarized as follows:

We present a novel high-quality data-driven approach for monoc-
ular depth estimation, which achieves enhanced depth predictions
with sharper object boundaries and reduced noise by tackling
the limitations of existing training data. This approach can also
be seamlessly integrated as a plug-and-play module into existing
depth estimation frameworks to boost their performance;

We introduce a self-adaptive consistency filtering mechanism for
dynamic training data refinement, which automatically filters
low-quality samples based on their consistency and informative-
ness, thereby improving model robustness against noisy data;
We propose a dual-prior learning strategy that integrates geo-
metric and semantic edge priors to provide comprehensive guid-
ance for refining depth estimates at object boundaries, leading to
improved edge delineation and detail preservation;
Comprehensive experiments on the KITTI and NYU datasets
demonstrate that our method significantly improves boundary
accuracy and depth quality, resulting in smoother and more
distinct edges compared to previous methods.

2. Related work
2.1. Monocular depth estimation

Monocular depth estimation is critical for autonomous vehicles,
as it allows them to perceive the 3D structure of their environment
for navigation, obstacle avoidance, and path planning. Existing meth-
ods (Ye et al.,, 2023; Feng et al., 2024) rely on supervised learning,
using ground-truth depth maps for training. However, this approach
faces challenges like edge blurriness and occlusion, which are especially
problematic in dynamic, real-world driving environments.
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To address these issues, researchers have explored self-supervised
learning (Zhang et al., 2023; Bae et al., 2023), multi-task learning (Hou
et al.,, 2023), and semantic segmentation (Jung et al., 2021). These
methods improve robustness by integrating additional information,
such as vehicle localization and scene segmentation, which are cru-
cial for autonomous driving. However, obtaining labeled data for au-
tonomous vehicles is costly and time-consuming. As a result, unsuper-
vised (Ling et al., 2022) and self-supervised learning (Wu et al., 2023b)
methods have gained traction. Datasets like KITTI (Geiger et al., 2013)
and NYU (Silberman et al., 2012) are commonly used, but they struggle
to capture the full complexity of real-world driving conditions.

Multi-modality learning, which combines data from multiple sen-
sors such as LIDAR, radar, and thermal cameras, has shown promise
in improving depth estimation accuracy. However, relying on spe-
cialized sensors (Siddiqui et al., 2020) can limit the practicality of
these methods for all autonomous vehicles. Additionally, complex tech-
niques like self-attention (Leistner et al., 2022) and precise sensor
calibration (Zalakain-Azpiroz et al., 2022) are resource-intensive and
may not be suitable for real-time applications in resource-constrained
autonomous vehicles.

Despite progress, monocular depth estimation methods often fail
to accurately capture object boundaries in complex environments, a
critical challenge for autonomous vehicles when making real-time navi-
gation decisions (Xiao et al., 2024; Wang et al., 2021; Shu et al., 2022).
Blurry edges and missing depth information can hinder the ability to
safely navigate crowded streets or detect obstacles.

2.2. Edge-related monocular depth estimation

Existing depth estimation methods, while effective, often struggle
with accurately capturing complex object boundaries due to noisy and
incomplete data during acquisition, a challenge that is amplified in
the context of autonomous vehicles. Several methods address this by
incorporating edge-aware strategies (Li et al.,, 2021; Zhuang et al.,
2023; Nazir and Coltuc, 2021). For example, CutDepth focuses on aug-
menting data with preserved edge features (Ishii and Yamashita, 2021),
but lacks a mechanism to filter out low-quality samples, which limits
its effectiveness under real-world noise encountered by autonomous
vehicles in dynamic driving scenarios. Methods like Edge Defocus
Tracking (Huang et al., 2022) and Edge-aware Loss Functions (Paul
et al., 2022) emphasize boundary accuracy but are unable to dynami-
cally prioritize reliable data, leading to unstable learning when vehicles
are navigating through cluttered or occluded environments.

Similarly, advanced strategies like Bi-directional Diffusion (Khan
et al.,, 2021) and ESPDepth (Xu et al., 2023) integrate edge informa-
tion into depth propagation, yet fail to balance fine-grained geometric
details with semantic consistency, resulting in blurred edges in regions
with complex object interactions, which are commonly encountered
in urban driving scenarios. For example, accurately distinguishing the
boundaries between vehicles and pedestrians at intersections or during
overtaking maneuvers is crucial for safe navigation in autonomous
vehicles.

In contrast, our proposed method tackles these issues with self-
adaptive consistency filtering to exclude noisy data and a dual-prior
learning strategy that combines geometric and semantic priors for
sharper boundary delineation. This approach leads to clearer, more
accurate depth predictions, especially in complex regions where tra-
ditional methods often fail, such as when navigating dense urban
environments or detecting objects with partial occlusions. Our method,
by dynamically prioritizing high-confidence depth data and incorpo-
rating both geometric structures and semantic cues, ensures that depth
maps generated for autonomous vehicles are more reliable for real-time
decision-making.
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Fig. 2. Pipeline of the proposed SharpEdge. SharpEdge comprises two key components: self-adaptive consistency filtering (Part B) and dual-prior learning
(Part C). The former filters the initial RGB-depth data pool to retain high-quality training samples, while the latter trains a two-branch network guided by saliency
and gradient priors. The resulting depth maps are fused via an adaptive strategy to produce sharp, accurate depth predictions. Additionally, a structured masking
refinement module enhances robustness by enabling the model to recover missing or occluded information.

2.3. Saliency-related monocular depth estimation

Saliency-related depth estimation enhances depth accuracy by in-
corporating saliency, which signifies the visual prominence of regions
or objects in an image (Song et al., 2022; Chen et al., 2023a; Song
et al., 2024; Chen et al., 2022). This approach is particularly practical
in complex scenes. Zhao et al. (2022) develop a model that integrates
depth estimation, salient object detection, and contour estimation,
enhancing depth accuracy through multi-task learning. Chen et al.
(2020) introduce a two-phase approach, initially estimating depth from
similar images and refining it with saliency cues. Ji et al. (2021)
propose a calibration module that merges raw and estimated depth
maps for improved reliability. Despite advancements, challenges persist
in saliency-related depth estimation. Depth images are often noisy, and
uncertainties at object boundaries are typical due to sensor limitations
and environmental factors like occlusion and reflection. Moreover,
while current methods focus on fusing RGB and depth data to im-
prove saliency detection, these strategies may not fully leverage the
complementary nature of both modalities, indicating potential areas for
enhancement.

3. Proposed method
3.1. Network architecture

The proposed method consists of two main components. The first
part (Part B in Fig. 2), referred to as self-adaptive consistency filtering
(Section 3.3), focuses on “valuable” data (depth with clear edges and
less noise) filtering. It takes the initial data pool (including RGB and
Depth) as input and aims to filter out “useless” training samples (depth
with unclear edges and more noise) while selecting the most “valuable”
ones. This process reduces the impact of redundant information and
minimizes training resource consumption, resulting in an enhanced
data pool containing more purified training samples. These selected
training samples are subsequently fed into the second part, dual-prior
learning (Section 3.4), depicted in Fig. 2-Part C. This part is designed
to train a model leveraging both geometric and semantic edge priors
(saliency and gradient) to further improve depth accuracy at object
boundaries. A detailed introduction of each part is provided in the
following sections.

3.2. Preliminaries of saliency

This paper introduces SharpEdge, a novel monocular depth estima-
tion framework designed to generate dense depth maps with enhanced
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Fig. 3. Illustration of saliency maps and gradient maps on the KITTI dataset. “w S&D” and “w/o S&D” means with and without the saliency and gradient

guidance, respectively.

edge sharpness without requiring additional annotation data and even
leveraging fewer training data samples. Specifically, we use saliency to
select “valuable” data.

Several approaches can be adopted to leverage the benefits of
saliency detection in monocular depth estimation. The first approach
incorporates saliency maps or cues as additional input to depth esti-
mation algorithms. Saliency maps highlight visually salient regions or
objects in an image. By considering these regions during depth estima-
tion, the algorithm can prioritize the extraction of depth information
from the most critical areas. This approach can lead to more accurate
depth estimation, particularly in complex scenes where salient objects
are crucial. The second approach uses saliency information to guide
the depth estimation process. By integrating saliency cues directly into
the depth estimation algorithm, the algorithm can prioritize depth
estimation for salient regions or objects. This incorporation of saliency
guidance helps refine the depth estimation results and improves the
overall quality of the resulting depth map.

3.3. Self-adaptive consistency filtering

Technical Rationale. In monocular depth estimation tasks, the
quality of training data is crucial to the final model performance.
However, existing depth datasets (e.g., KITTI, NYU) are often generated
using complex sensing equipment (such as LiDAR, stereo cameras, or
structured light systems), which are prone to sensor noise, occlusion, or
environmental conditions (e.g., changes in lighting), leading to varied
quality in the depth maps. Directly using these “low-quality” samples
for training often degrades the model’s learning capability, making
it difficult to accurately predict depth information, especially around
object boundaries, fine details, or complex scenes. Thus, automatically
filtering out “high-quality” and “informative” training samples from
existing datasets becomes a key challenge in the model design.

In this context, the self-adaptive consistency filtering (SACF) mech-
anism is introduced to improve the purity of the training dataset. This
mechanism leverages saliency prediction models to evaluate the con-
sistency between the RGB and depth maps in salient regions, thereby
selecting samples where RGB and depth maps have strong similarity
in saliency (i.e., “high-quality” samples). This filtering strategy aims
to remove redundant samples, reduce the negative impact of low-
quality depth maps, and focus on informative salient regions, ultimately
producing a more reliable training dataset.

Technical Detail. As shown in Part B of Fig. 2, given any RGB and
depth pairs in existing training datasets of monocular depth estimation,
we feed them into the saliency predictor (a SOTA salient object detec-
tion model) to produce RGB saliency (R,,) or depth saliency (D,,)
maps. Saliency maps highlight an image’s most visually prominent
regions, such as object edges, shapes, or regions of interest. By aligning
the saliency maps from the RGB and depth images, SACF ensures that
only those samples with high structural correspondence are selected,
thus providing the training data is both accurate and consistent. While
RGB saliency maps are often reliable, depth saliency maps can vary
significantly depending on the quality of the depth data. Ensuring the
saliency quality when the depth is low quality is almost infeasible.
Thus, we only retain those RGB with high-quality depth maps and
exhibit substantial similarity between their RGB and depth saliency
as final purificatory training samples. To automate the evaluation of
similarity between RGB and depth saliency maps, a consistency filter is
introduced as a “discriminator” that determines whether the given RGB
and depth saliency maps have sufficient structural consistency. The
consistency filter is a simple classification network consisting of two
feature encoders (e.g., ResNet34) and a multi-perception layer, which
takes RGB and depth saliency as input, outputting similarity scores (“1”
indicates high similarity, “0” indicates low similarity).

To ensure that the consistency filter can effectively distinguish the
similarity between RGB and depth saliency maps, the study uses the
S-measure (Structural Similarity Measure) as the supervision signal dur-
ing training. S-measure is a metric designed to evaluate saliency map
quality by measuring the structural similarity between saliency maps,
considering salient regions’ precision and structural completeness. This
process can be formulated as:

I, if SRy,
0, otherwise

D,,)-7>0

SS(R:aI’DsuI) = { s (1)

where SS(-) means calculating the similarity between RGB and depth
saliency maps. y is a predefined similarity threshold (we empirically
set it to 0.8%), and S,,(-) denotes S-measure. By comparing the predicted
similarity scores with the similarity labels obtained from the S-measure
calculation (“1” or “0”), a cross-entropy loss is used to optimize the

2 Ablation study can be seen in Table 7.
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Fig. 4. Illustration of saliency maps and gradient maps on the NYU dataset. “w S&D” and “w/o0 S&D” means with and without the saliency and gradient guidance,

respectively.

weights of the consistency filter, making it more accurate in judging
the similarity of saliency map pairs.

There are four cases when generating final purificatory training
samples, i.e., “high/low-quality depth + strong/weak RGB saliency and
depth saliency similarity”. Since the low-quality depth and strong con-
sistency combination is rare in practice, we have omitted it. Only the
high-quality and strong-similarity cases can ensure accurate and robust
training samples. In this way, we have obtained high-quality RGB and
depth data, which are denoted as RGB* and Depth*, respectively. The
visualization results are shown in Figs. 3 and 4.

Technical Summary. The self-adaptive consistency filtering (SACF)
methodology is designed to automate identifying high-quality training
samples in monocular depth estimation tasks, addressing the inherent
limitations in existing depth datasets. By leveraging saliency prediction
models and a custom consistency filter, SACF measures the structural
consistency between RGB and depth maps, using this measure to retain
only those samples that exhibit strong structural alignment selectively.
This selective filtering strategy enhances the purity of the training
data and ensures that the model focuses on learning meaningful depth

features, thus improving overall performance, especially in complex
scenarios.

3.4. Dual-prior learning

Technical Rationale. In conventional monocular depth estimation
tasks, the training paradigm primarily depends on a single supervision
signal, such as depth maps. However, relying solely on depth labels
often fails to capture fine-grained details and accurate structural infor-
mation, especially in complex RGB scenes or when occlusions occur.
Furthermore, noise, unreliable annotations, and a limited number of
training samples frequently affect the obtained depth maps. While
previous mentioned self-adaptive consistency filtering approach (Sec-
tion 3.3) that filter out “valuable” training samples can enhance data
quality, this strategy alone cannot address the lack of sharp boundaries
and fine details in the resulting depth maps.

To address these issues, we propose a dual-prior learning strategy,
which integrates saliency and gradient as complementary priors to
guide the depth estimation process. The saliency prior helps the model
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focus on visually prominent regions, such as object boundaries. At
the same time, the gradient prior emphasizes edge continuity and
sharpness in the depth maps. By simultaneously leveraging these two
distinct priors, the model gains a more comprehensive understanding
of the scene, leading to more accurate and sharper depth predictions.
More detailedly, the semantic prior (saliency) emphasizes global visual
attention, guiding the model to focus on semantically important regions
— typically foreground objects and their overall contours. On the
other hand, the geometric prior (gradient) captures local structural
discontinuities at a fine-grained level, helping the model identify de-
tailed transitions and depth boundaries that may not be semantically
prominent. We further elaborate that, in practice, these two types of
edge cues often occupy complementary spatial regions. While saliency
tells the model which areas are important, gradient focuses on where
the depth transitions occur. By modeling them through two parallel
encoders and decoders, and then adaptively fusing their outputs via the
Adaptive Fusion module (Section 3.4.3), our network dynamically bal-
ances the contribution of each prior based on scene context—resulting
in clearer, more continuous, and structurally accurate boundaries in the
final depth predictions.

Note that compared with existing multi-modality learning methods,
the superiority of our proposed dual-prior learning® is its ability to
achieve higher performance without requiring additional annotation
data and even leveraging fewer training data samples (see Table 2).
The dual priors used in our method are also readily available.

Technical Detail. To implement the dual-prior learning process,
we utilize the outputs of the self-adaptive consistency filtering (Sec-
tion 3.3), denoted as RGB* and Depth* in Fig. 2-Part C.

3.4.1. Saliency/gradient-focused depth branch

The dual-prior learning process contains two branches, saliency-
focused depth branch and gradient-focused depth branch, which sep-
arately utilize two distinct encoders: a saliency encoder (En,,) and a
gradient encoder (En,,,,). Each encoder is designed to extract high-
level features unique to its respective prior. The saliency encoder
focuses on capturing visual contrast, object boundaries, and salient
semantics in the image. This encoder processes the purified RGB input
and generates a feature map highlighting visually significant regions,
making it easier for the network to understand object boundaries
and critical regions in the scene. On the other hand, the gradient
encoder captures depth discontinuities and sharp changes in the scene’s
structure, which are crucial for maintaining accurate edge information.
This encoder is trained to emphasize areas where depth values change
abruptly, helping the model retain sharp boundaries in its predictions.
By employing two separate encoders, the network can specialize in
learning distinct aspects of the scene structure, ensuring that both
visual attention and geometric continuity are accurately represented.

Each prior encoder is connected to two decoders: one for generating
saliency/gradient maps and another for generating depth maps guided
by the corresponding prior. Specifically, the saliency encoder is paired
with a saliency decoder and a saliency-focused depth decoder (De,,,). In
contrast, the gradient encoder is paired with a gradient decoder and a
gradient-focused depth decoder (De,,,;). The saliency decoder outputs
saliency maps that highlight regions of high visual attention, ensuring
the saliency-prior depth maps (D), generated by the saliency-focused
depth decoder, focus on visually prominent areas. The gradient decoder
outputs gradient maps that emphasize structural edges and depth dis-
continuities, guiding the generation of sharp gradient-prior depth maps
(Dg,qq) to preserve boundary details and prevent blurred edges in the
final depth estimation.

3 The in-depth analysis of multi-modality learning and dual-prior learning
can be seen in Section 4.6.
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3.4.2. Structured masking refinement

In the previously discussed self-adaptive consistency filtering (Sec-
tion 3.3) and dual-prior learning strategies (Section 3.4), we effectively
enhance the monocular depth estimation model’s ability to predict
critical edges by leveraging saliency and gradient priors. However,
these methods rely on complete RGB and depth data during training,
encouraging the model to prioritize global features. As a result, the
model may treat all regions uniformly, which can reduce its attention
to local edge details and structures.

To mitigate this, we propose a structured masking strategy that
compels the model to learn how to compensate for critical features
even when complete information is unavailable (Fig. 5). By simulating
partial data loss during training, this strategy forces the model to
reconstruct and compensate for masked areas, making it more adept at
handling occlusions and partial data loss during inference. This results
in a more robust model that better captures local structures and infers
missing depth information.

Unlike the random masking used in traditional masked autoen-
coders (He et al., 2022), our structured masking strategy targets the
salient object boundaries in depth maps. By focusing specifically on
discontinuous regions and salient details, we guide the network to pay
closer attention to these critical areas, enhancing overall prediction
accuracy. This strategy is integrated into gradient-focused and saliency-
focused depth branches, acting as a self-supervised refinement step that
challenges the network to reconstruct masked regions using contextual
information.

The process begins with generating a structured mask (My;,,.,)-
Given a depth map, we first apply a saliency detection method to gener-
ate a foreground saliency map (S ,), highlighting prominent objects in
the scene. We then use an edge detection operation (e.g., a Canny filter)
to produce an edge mask (M,,,,), marking the boundaries of these
salient regions. By combining the saliency map and the edge mask, we
create a structured mask that specifically targets boundary regions of
the depth map.

This structured mask (My,,,.,) is then used in a masked encoder—
decoder network, which aims to reconstruct the missing portions of
the depth feature map using contextual cues from the available data.
Importantly, this network has the same encoder-decoder architecture
as the Saliency/Gradient-focused Depth Branch, ensuring consistency
across the model.

The reconstruction is supervised by a reconstruction loss (L£,,.,,),
such as Mean Squared Error (MSE), which measures the difference
between the predicted depth map (D,,,,;.4) and the original unmasked

depth map (Doriginal):
1 A 2
Lrecon = ~ Z ‘Doriginal () = Diasked ()| - ()]
1€Mgtryct

where N represents the total number of pixels masked by the structured
mask Mg, i denotes the index of pixels masked by Mg, - The
summation 3.y - indicates that the loss is only computed for the
pixel locations covered by the structured mask.

To further improve feature learning, we introduce dense connec-
tions between intermediate features of corresponding encoder layers
in the masked encoder-decoder network and those in the saliency/
gradient-focused depth branch via a Concatenation + Convolution oper-
ation. This facilitates the flow of both low-level and high-level features
across multiple layers, enhancing the model’s ability to reconstruct
masked areas and improving overall depth prediction.

3.4.3. Adaptive fusion

After generating the separate saliency-prior and gradient-prior
depth maps, we employ an adaptive fusion scheme to combine these
complementary predictions into a final refined depth map (Dj,.4),
as shown in Fig. 6. This fusion scheme dynamically balances the
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Fig. 5. Flowchart of structural masked refinement (Section 3.4.2). By simulating partial data loss during training, this strategy forces the model to reconstruct
and compensate for masked areas, making it more adept at handling occlusions and partial data loss during inference.
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Fig. 6. Flowchart of adaptive fusion (Section 3.4.3), which aims to integrate the two estimated depth maps adaptively.

contributions of the two priors based on learned weights, which are
defined as follows:

Dfused =wl * g(Dsal) + w2 * g(Dgrad)’ (3)

where g(-) represents the sigmoid function to map the depth maps
between 0 and 1, ensuring smoothness and continuity in the fusion. wl
and w2 are adaptive weights calculated from the Multi-Layer Percep-
tion (MLP) outputs of the saliency and gradient encoders, respectively:

wl = MLP(En,,(RGB")), w2 = MLP(En,,,;(RGB™)), (4)

where Eng,(-) and En,,,(-) separately denote the depth encoder
equipped with saliency decoder and gradient decoder. RGB* denotes
the output of the self-adaptive consistency filtering (Section 3.3). These
weights are learned to adaptively emphasize the more reliable prior in
each region, enabling the model to handle complex scenarios where
one prior may be more informative than the other.

The rationale for employing two distinct depth encoders, rather than
integrating saliency and gradient into a single depth encoder, is as
follows: (1) By separating saliency and gradient into distinct branches,
the model can specialize each encoder to focus on unique features,
thereby avoiding interference between the priors. For example, the
saliency encoder can prioritize visual contrast and object prominence,
while the gradient encoder can concentrate on depth discontinuities
and edge consistency; (2) With dual-prior learning, the fusion module

can adaptively adjust the influence of each prior based on the scene’s
context. For instance, in regions with complex textures or overlapping
objects, the saliency prior may be more critical, while in regions with
clear geometric structures, the gradient prior may take precedence.
While our adaptive fusion strategy shares the general idea of learn-
ing dynamic weights to balance multiple information sources — sim-
ilar to recent attention-based fusion approaches such as MMAD (Li
et al., 2024), ViGT (Li et al., 2023), WaveFormer (Wu et al., 2024),
BVINet (Wu et al., 2025), and Deep Stereo Video Inpainting (Wu et al.,
2023a) — it differs in design motivation, structure, and application
focus. These prior methods typically adopt global attention mechanisms
or learnable tokens within transformer-based architectures, aiming to
capture long-range dependencies and semantic correspondences across
time or modalities. In contrast, our method is tailored for boundary-
aware monocular depth estimation, where the goal is to adaptively
integrate geometric (gradient) and semantic (saliency) priors at a pixel
level. To this end, we employ a lightweight dual-branch MLP that
produces spatially varying fusion weights (wl, w2), enabling local
structure-aware integration without incurring the high computational
cost of global attention. This design emphasizes interpretability and
efficiency, particularly for high-resolution depth prediction.
Technical Summary. The proposed dual-prior learning framework
leverages saliency and gradient priors to enhance monocular depth
estimation. Separate branches capture distinct features: saliency for
visual prominence and gradient for sharp edges. To further refine pre-
dictions, a structured masking refinement module simulates partial data
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loss, training the model to recover masked regions and improve detail
accuracy. Finally, an adaptive fusion scheme balances the contributions
of both priors based on scene context, resulting in sharper and more
robust depth maps, especially in complex scenarios with occlusions or
fine details.

3.5. Model training

3.5.1. Training setting

In Part B of Fig. 2 (Section 3.3), we employ two saliency pre-
dictors for our system. Firstly, we utilize the state-of-the-art salient
object detection model, e.g., RMFormer (Deng et al., 2023), known
for its robust performance and efficient inference speed. Additionally,
due to its ease of deployment, we incorporate the RGB-D saliency
predictor, e.g., CAVER (Pang et al.,, 2023). It is important to note
that the parameters of both models are predetermined and remain
fixed throughout the process without undergoing any training. For the
gradient/saliency encoders and two depth decoders in Part C of Fig. 2
(Section 3.4), we adopt the same network architectures derived from
New CRFs (Yuan et al., 2022b). Similarly, the gradient decoder and
saliency decoder architectures are obtained from BBSNet (Zhang et al.,
2021). We generate the ground-truths for the gradient by inputting
the refined training samples’ RGB and depth data into the Canny edge
detection algorithm.

3.5.2. Training loss

Our training objective has three components: depth estimation su-
pervision, saliency prediction supervision, and gradient prediction reg-
ularization.

For depth estimation supervision, following previous works, we use
the scale-invariant log loss ([’depth) proposed by Bae et al. (2023) to
supervise the training.

1 A
Edeprh = }’\/N Z dl-z - _N2 (Z d,-)z, (5)
1 1

where d; = log yi — log yi, yi is the predicted depth map and yi is the
pseudo ground-truth depth map. N represents the number of pixels
with valid values and 4 is a weighting factor. We scale the range of
the loss with y to improve convergence.

For saliency prediction supervision, we use Binary CrossEntropy
(BCE) loss.

Lyee = —w s (7 # In(e®) + (1 = r*) % In(1 =€), (6)

where w is the weight value, usually 1. ¢° is the predicted saliency map,
r* is the ground-truth saliency map.

For gradient prediction regularization, we use Image Gradient Dif-
ference Loss (Egd), which is one of the commonly used loss functions
in edge detection. It is utilized to encourage the generation of smooth
edge maps.

4

Leg= | Vyi = Vp; |§, )

L
NS

Here, N represents the total number of pixels, y; is the ground truth
edge map, p; is the predicted edge map, V denotes the gradient opera-
tor, and | - |, denotes the Euclidean distance.

Total loss (£,,,) can be denoted as:

Lopar = X Lyggpp +a2X Lyp +a3X Loy, (€))

where a1, a2, a3 are the weights. We set them to 0.5, 0.6, and 0.3 based
on experience.
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4. Experiments
4.1. Datasets

KITTI dataset. KITTI dataset (Geiger et al., 2013) is the most
used benchmark with outdoor scenes captured from a moving vehicle.
Following (Ning and Gan, 2023), we use the Eigen split (Eigen et al.,
2014) to train and evaluate the proposed method, which has 23,488
training image/depth pairs for training, and 697 for testing.

NYU dataset. We use the NYUv2 dataset (Silberman et al., 2012)
for evaluation, a widely used benchmark for indoor monocular depth
estimation with 120 K RGB-D videos captured from 464 indoor scenes.
To evaluate our method, we follow the official training/testing split,
where 24,231 RGB image/depth pairs from 249 scenes are used for
training and 654 images from 215 scenes are used for testing.

4.2. Evaluation metrics

For evaluation, we compute the seven standard metrics (Abs Rel, Sq
Rel, RMSE, RMSE log, 6 < 1.25, § < 1.252, 6 < 1.25%) proposed in Eigen
et al. (2014) and used by most works in the literature.

4.3. Implementation details

Our work is implemented in Pytorch and experimented on Nvidia
RTX 3090 GPU. The network is optimized end-to-end with the Adam
optimizer (§; = 0.9, f#, = 0.999) with an initial learning rate of 1 x 107*
for all model training, which will be decreased by multiplying 0.1 for
every 30 epochs. The training runs for 60 epochs, and we use a batch
size of 8 for our method. For the data augmentation, we apply random
center crop-and-resize, brightness jitter, and contrast jitter for all model
training.

4.4. Performance comparison

To prove the effectiveness of our approach, we have compared our
method against the ten most recent SOTA single-label-based* monocu-
lar depth estimation models over KITTI and NYU benchmark datasets.
The SOTA models include AdaBins (Bhat et al., 2021), Bins (Li et al.,
2022), New CRFs (Yuan et al., 2022a), NDDepth (Shao et al., 2023),
Trap (Ning and Gan, 2023), URCDC (Shao et al., 2024), CAMDE (Li and
Zhang, 2024), HA-Bins (Zhu et al., 2024), SVTNet (Jia et al., 2025), and
CFB (Song and Hyun, 2025).

4.4.1. Results on KITTI

We assessed the performance of our model using the standard KITTI
Eigen split, which consists of 697 images paired with raw LiDAR scans.
It is worth noting that improved ground truth labels were available for
652 images, allowing for better network tuning. Our results, presented
in Table 1, indicate a substantial performance enhancement compared
to previous methods. Specifically, our method achieved an average
reduction of approximately 15% in almost all error metrics, including
“Abs-Rel”, “Sq Rel”, “RMSE”, and “RMSE log”, surpassing prior ap-
proaches. Note that our proposed method requires fewer training image
pairs compared to other single-label methods on the KITTI dataset.
Specifically, we observe a rough reduction of 2/3 in the number of
training image pairs, as illustrated in Table 2.

Moreover, the visualizations of the predicted depth maps, as de-
picted in Fig. 7, demonstrate the superior capabilities of our method.
Notably, our model generates cleaner and smoother depth predictions
while preserving the sharp edges of objects, such as those outlining
human figures. This remarkable performance, especially in producing
sharp object edges, highlights the effectiveness of our approach.

4 Please note that this paper primarily focuses on monocular depth esti-
mation based on single-label approaches. We have intentionally excluded the
comparison of multi-modality-based methods as they fall outside the intended
scope of our research.
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Table 1
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Quantitative comparison with recent representative methods on the KITTI benchmark using the
Eigen split and the NYU benchmark. All input images are resized to 640 x 192 unless otherwise
specified. The reported numeric numbers are from the original papers or provided codes/datasets.
The encoders and depth decoders within the SharpEdge are based on New CRFs (Yuan et al,,
2022b). The best/second best results are highlighted in red and green, respectively.

Model [LXEL DDep ap RCD AMD Ours
Set Year 0 0

AbsRell| 0.058 0.056 0.052 0.050 0.054 0.050 0.060 0.051 0.049 0.052 0.048
SqRell| 0.190 0.172 0.155 0.141 0.149 0.142 - 0.148 0.140 0.142 0.140
RMSEL| 2.360 2.248 2.129 2.025 1.990 2.032 2.325 2.063 1.989 2111 2.011
RMSE logl| 0.088 0.085 0.079 0.075 0.078 0.076 - 0.078 0.074 0.077 0.073
§<1.257| 0.964 0.970 0.974 0.979 0.976 0.977 0.964 0.975 0.981 0.981 0.981
§<1.252T| 0.995 0.996 0.997 0.998 0.998 0.997 0.996 0.997 0.998 0.997 0.998
§<1.2531| 0.999 0.999 0.999 0.999 0.999 | 0.999 | 0.999 0.999 0.999 0.999 0.999
AbsRell| 0.103 0.104 0.095 0.087 0.095 0.088 0.106 0.094 0.089 0.091 0.089
RMSEL| 0.364 0.362 0.334 0.311 0.332 | 0.316 | 0.349 0.334 0.312 0.316 0.311
log 10L| 0.044 0.044 0.119 0.038 0.119 - 0.040 0.036 0.038 0.035
§<1.257| 0.903 0.902 0.922 0.936 0.925 0.933 0.905 0.922 0.939 | 0.935 0.937
§<1.252T| 0.984 0.984 0.992 0.911 0.988 0.992 0.989 0.991 0.992 0.993 0.994
§<1.2537| 0.997 0.996 0.998 0.998 0.997 0.998 0.998 0.999 0.999 0.999 0.999

SVTNet2s

URCDCzs | Trap2s | NDDepthzs

Fig. 7. Qualitative results on the KITTI dataset. Compared with the state-of-the-other models, our SharpEdge performs better in predicting the depths with sharp

edges. Please zoom in for more details.

SVTNet:s

URCDC:4 Trapz: NDDepth::

Fig. 8. Qualitative results on the NYU dataset. The predictions of our SharpEdge have higher qualities than those of other SOTA models. Please zoom in for

more details.

4.4.2. Results on NYU

Table 1 showcases the performance of our method on the NYU
dataset. Notably, the state-of-the-art performance on the NYU dataset
has reached a saturation point, leading some methods to utilize addi-
tional data for pretraining the model and fine-tuning it on the NYU
training set. In contrast, our method achieves remarkable performance
improvements across all metrics without additional data. Specifically,
we perform an “Abs Rel” error within 0.09, a “6 < 1.2523” accuracy of
99.9%, and a reduction in the log 10 metric from 0.047 to 0.035 in the

10

NYU set, highlighting the significant contribution of our approach in
enhancing results. Please note that our proposed approach also signif-
icantly reduces the number of required training image pairs compared
to other single-label methods applied to the NYU dataset. Specifically,
our observations indicate a rough halving of the training image pair
quantity, as depicted in Table 2.

Furthermore, our qualitative results depicted in Fig. 8 demonstrate
that our method excels in estimating depth, particularly in challenging
regions characterized by repeated textures, complex environments, and
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Fig. 9. Visual comparison between three selected target SOTA models (denoted as New CRFs, HA-Bins, and Trap) and their updated versions (denoted as
New CRFs+, HA-Bins+, and Trap+) trained by our proposed method. Zoom in for more details.

Table 2

Comparison of the number of training images between single-label methods
(solely use raw depth maps for supervision) and our method on KITTI and
NYU datasets.

Table 4

Ablation study regarding structural masked refinement (SMR) on the KITTI
and NYU datasets. The encoders and depth decoders within the SharpEdge
are based on New CRFs (Yuan et al., 2022b).

m Existing Single-label Methods Our Method
KITTI 23,488 15,658
24,231 12,134

Table 3

Generalization of our proposed method to other monocular depth estimation
methods on the KITTI benchmark using the Eigen split and the NYU bench-
mark.

Metrics [AbsRell RMSE! &< 1.257(Abs Rell RMSE! § < 1.251]
WEVACEFY 0.052 | 2.129 | 0.974 | 0.095 | 0.334 | 0.922
W EAVAeEES 0.048 | 2.011 | 0.981 | 0.089 | 0.311 | 0.937
Trap,; 0.054 | 1.990 @ 0.976 | 0.095 | 0.332 | 0.925
Trap+ 0.050 | 1.945 | 0.979 | 0.091 | 0.325 | 0.935
G| 0.051 | 2.063 | 0.975 | 0.094 | 0.334 | 0.922
lawcihEee | 0.050 | 2.026 | 0.981 | 0.092 | 0.327 | 0.929

low lighting conditions. This showcases the ability of our method to
generate sharper object edges, further highlighting its effectiveness.

4.4.3. Generalization evaluation

To evaluate the generalization capability of our proposed method,
we select three state-of-the-art (SOTA) models — NeW CRFs, HA-Bins,
and Trap - as targets. Specifically, we replace the saliency/gradient
encoders and depth decoders in our SharpEdge framework with the
encoders and decoders of the targeted SOTA models, respectively.
The experimental results, as shown in Table 3, indicate that our ap-
proach consistently enhances the performance of all targeted models.
For instance, on the KITTI dataset, our method achieves average im-
provements of 0.85%, 1.15%, and 1.6% in the § < 1.25 metric for
NeW CRFs, HA-Bins, and Trap, respectively, compared to their original
implementations. Qualitative results in Fig. 9 further illustrate that
the enhanced models generate more accurate depth maps with sharper
edges than the baseline versions.
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Sets
Metrics Abs Rell RMSE! § < 1.25T(Abs Rell RMSE! § < 1.251|
w/o SMR 0.053 | 2.047 | 0974 | 0.095 | 0.318 | 0.929
GELCETG R ESRES 0.049 | 2.028 | 0.978 | 0.091 | 0.313 | 0.934
LAY EH A 0.048 | 2.011 | 0.981 | 0.089 | 0.311 | 0.937

4.5. Ablation study

4.5.1. Effectiveness of structural masked refinement

To evaluate the effectiveness of the proposed structural masked
refinement (SMR) strategy, we conducted an ablation study on both
the KITTI and NYU datasets using New CRFs as the backbone for
the encoders and depth decoders. As shown in Table 4, excluding
SMR (w/o SMR) results in the worst performance across all metrics.
Specifically, applying random masking shows slight improvements over
the baseline, while integrating structural masking achieves the best
results. Structural masking refinement reduces the Abs Rel from 0.053
to 0.048 on the KITTI dataset and increases the § < 1.25 from 0.974
to 0.981. Similarly, for the NYU dataset, the Abs Rel decreases from
0.095 to 0.089, while § < 1.25 improves from 0.929 to 0.937. These
results confirm the effectiveness of the structural masked refinement in
enhancing depth estimation accuracy by focusing on crucial structural
information.

4.5.2. Effectiveness of self-adaptive consistency filtering

To verify the effectiveness of self-adaptive consistency filtering
(Section 3.3), we compared the model performance between training
with the complete set of training samples and our purified subset of
“valuable” training samples from both the KITTI and NYU datasets.
The results presented in Table 5 demonstrate that our method achieves
competitive performance even with minimal training data, highlighting
its efficiency in generating high-quality depth estimates.

4.5.3. Different saliency predictors

Indeed, a more powerful saliency predictor can significantly benefit
the overall performance. In this study, we have incorporated four
representative saliency object detection approaches, namely EDN (Wu
et al., 2022), MENet (Wang et al., 2023b), LeNo (Wang et al., 2023c),
and RMFormer (Deng et al., 2023). For RGB-D saliency prediction, we
have chosen BBSNet (Fan et al., 2020), SPNet (Zhou et al., 2021), CAT-
Net (Sun et al., 2023), and CAVER (Pang et al., 2023) due to their ease
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Table 5
Ablation study regarding self-adaptive consistency filtering (SACF) on the KITTI and NYU datasets. The
encoders and depth decoders within the SharpEdge are based on New CRFs (Yuan et al., 2022b).
Sets
Metrics Abs Rell RMSE! &< 1.257Abs Rell RMSE! § < 1.251]
w/o SACF (full data) | ECLSEY 2.142 0.973 0.098 | 0.324 | 0.921
w SACF (selected data) 0.048 | 2.011 | 0.981 | 0.089 | 0.311 | 0.937
Table 6
Ablation study on different (RGB-D) Saliency predictors. The best result is marked in bold. The encoders
and depth decoders within the SharpEdge are based on New CRFs (Yuan et al., 2022b).
Datasets
Metrics |Abs Rell | RMSE! | §<1.25T| Abs Rell | RMSE! |6 <1.257
U 0.060 2.075 0.974 0.097 0.319 0.929
4. Diff t
ESa;igirn:e\/n 0.053 2.057 0.978 0.093 0.322 0.926
Predictors eNo 0.052 2.032 0.979 0.090 0.314 0.936
Jiy=d 0.048 2.011 0.981 0.089 0.311 0.937
0.059 2.093 0.976 0.092 0.324 0.931
E Pifferent 0.058 | 2.092 @ 0.975 | 0.094 0323 | 0.932
Sali
Pradictors 0.054 | 2.053 = 0.980 | 0.091 0316 | 0.935
0.048 2.011 0.981 0.089 0.311 0.937
Table 7 training of the model. Second, selecting a minimal value for y can result

Ablation study regarding threshold y in SACF (Section 3.3). The encoders and
depth decoders within the SharpEdge are based on New CRFs (Yuan et al.,
2022b).

Metrics|Abs Rell 6 < 1.257 Abs Rell| RMSE! 6 < 1.251]
0.056 | 2.124 | 0.972 | 0.097 | 0.299 | 0.927
0.050 | 2.106 | 0.975 0.095 | 0.316 @ 0.933
0.048 | 2.011 | 0.981 | 0.089 | 0.311 & 0.937
0.052 2.019 | 0.977 | 0.092 | 0.313 | 0.932

of deployment and good performance. Based on the quantitative results
presented in Table 6-A, we have selected RMFormer as the saliency
predictor for our method. It outperformed other competitors in terms
of all metrics. For example, in the KITTI dataset, the < 1.25 metric
improved from 0.974 (with EDN) to 0.981 (with RMFormer), thereby
demonstrating the effectiveness of utilizing saliency maps generated by
RMFormer. Furthermore, the performance results obtained with all four
object detection methods exhibit marginal differences, indicating the
robustness of our approach. Table 6-B shows that the RGB-D saliency
predictor CAVER achieves the best results.

4.5.4. Choices of threshold y adopted in SACF

We conducted experiments to test various choices for y (Eq. (1)),
and the detailed results can be found in Table 7. Note that the y
parameter and a1 are multiplied in the total loss function (Eq. (8));
thus, to distinguish the separate effect and observe the effect of y on
the depth loss component, we fix a1 and vary y. The results indicate
that the overall performance of our method is moderately sensitive to
the selection of y. Specifically, the best result is achieved when y = 0.8,
while y = 0.9 performs worse than y = 0.7, suggesting that a larger y
does not always lead to performance improvement. There are two main
reasons for this observation. First, when a large value of y is used, the
available training data becomes limited, potentially causing incomplete
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in redundant training data, hindering the model’s performance.

4.5.5. Effectiveness of dual-prior learning

We established a baseline module to evaluate the effectiveness of
our proposed dual-prior learning approach (Section 3.4). As shown
in Table 8, this baseline module consists of a single stream with a
depth encoder and a depth decoder (line 1). By comparing line 2 with
the baseline, which incorporates saliency guidance into the monocular
depth estimation model training, we can observe the impact of saliency
guidance. Line 2 represents a two-stream network with the gradient
stream containing only a depth decoder. The results show that adding
saliency-guided flow improves the performance compared to the base-
line of a single depth encoder and depth decoder (line 1). For example,
the Abs Rel metric decreases from 0.058 to 0.051 in the KITTI testing
dataset, indicating that saliency guidance contributes to generating
more accurate depth maps. In contrast to line 2, line 3 represents a
two-stream network with gradient-guided flow but without a saliency
decoder. This configuration performs better than line 2 because the
generated gradient maps encompass gradient information from the
entire image. In contrast, saliency maps only focus on the salient object
while disregarding the background. Finally, line 4 corresponds to our
proposed dual-prior learning approach, which outperforms all other
configurations.

To further validate the effectiveness of the adaptive fusion strategy
in the Dual-Prior Learning (DPL) framework, we conduct a statistical
analysis of the learned fusion weights. Specifically, we sample 500 test
images from the KITTI dataset and compute the average values of wl
(saliency branch) and w2 (gradient branch) for each image. As shown
in Fig. 10-A, both weights are generally distributed in the range of [0.4,
0.6], with w1 centered around 0.52. This indicates that the model main-
tains a relatively balanced reliance on both semantic and geometric
priors across diverse scenes. We further visualize representative cases
to demonstrate the dynamic nature of the learned weights. In Fig. 10-
B, a structurally complex but low-texture scene leads to a higher wl,
suggesting that the model relies more on saliency cues. In contrast,
Fig. 10-C presents a texture-rich yet semantically ambiguous scene
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Table 8

Ablation study regarding dual-prior learning. E.D.: depth encoder and decoder; Sal.D.: saliency decoder
and depth decoder; Gra.D.: gradient decoder and depth decoder. The encoders and depth decoders within
the SharpEdge are based on New CRFs (Yuan et al., 2022b).

Sal Stream Grad Stream KITTI NYU
E.D. Sal. D.| E.D. Gra.DJAbs Rell| RMSE! § < 1.25T|Abs Rell | RMSE! § < 1.257]
1| « b 4 b 4 b 4 0.058 | 2.102 | 0.967 | 0.100 | 0.323 | 0.925
2l v v X 0.051 | 2.022 | 0.975 | 0.090 | 0.314 | 0.934
3| ¢ b 4 v v 0.053 | 2.031 | 0970 | 0.093 | 0.318 | 0.931
4 v v v 0.048 | 2.011 | 0.981 | 0.089 | 0.311 | 0.937
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Fig. 10. Analysis of the adaptive fusion weights in the Dual-Prior Learning framework. (A) Distribution of the learned fusion weights wl (saliency branch) and
w2 (gradient branch) across 500 KITTI test images, showing a generally balanced contribution from both priors. (B) Example scene with complex structure and
weak texture, where wl dominates, indicating stronger reliance on semantic saliency. (C) Texture-rich but semantically ambiguous scene, where w2 becomes
dominant, emphasizing gradient-based structural details.

Table 9 4.6. In-depth analysis of multi-modality learning and dual-prior learning
Ablation study regarding adaptive fusion (Section 3.4.3). The encoders and

depth decoders within the SharpEdge are based on New CRFs (Yuan et al.,, In monocular depth estimation, multi-modality learning involves
2022b).

utilizing diverse input data sources to enhance the accuracy and robust-
ness of depth estimation. This approach leverages complementary in-
formation from different modalities, such as visual and non-visual data,
to improve adaptability and performance in complex environments.
For instance, combining image data with radar or LIDAR information
can provide more precise depth estimation across various lighting
conditions, including non-visible light.

In contrast, dual-prior learning should not be confused with multi-
modality learning, as it does not rely on combining distinct external
modalities. Instead, it employs different internal priors derived from a
single modality, such as images, to jointly train a model using multi-
ple internal cues. Specifically, dual-prior learning utilizes two distinct
depth encoders, saliency, and gradient decoders to guide the depth de-
by adjusting the relative contributions of each prior. coding process. These internal priors focus on different properties of the

input data, such as object boundaries and region importance, enabling
the model to capture and integrate diverse visual characteristics for
more detailed depth estimations.
4.5.6. Effectiveness of adaptive fusion The advantages of dual-prior learning are as follows: (1) Refined
Depth Maps — by combining saliency-guided and gradient-guided
depth maps, this approach generates more detailed and accurate depth
estimations; (2) Improved Feature Integration — the method enhances

Abs Rell RMSEl &< 1.25T|Abs Rell RMSE! § < 1.251)
0.054 | 2.025 | 0.977 | 0.095 | 0.317 | 0.931
0.056 | 2.031 | 0.974 | 0.098 | 0.323 @ 0.926
0.048 | 2.011 | 0.981 | 0.089 | 0.311 | 0.937

Metrics
Addition
Multiplication
Masked Fusion

where w2 dominates, reflecting the model’s preference for gradient-
based structural information. These results confirm that the proposed
fusion mechanism effectively adapts to different scene characteristics

To verify the effectiveness of the proposed adaptive fusion (Sec-
tion 3.4.3), we compared it with a naive fusion strategy that directly

adds the two depth maps without multiplying them with flattened the integration of different visual features through masked fusion. This
weighting features. As shown in Table 9, the results demonstrate that increased integration improves the model’s sensitivity to edges and
our proposed method outperforms the naive fusion strategy. The ra- textures.

tionale behind this improvement is that the weighting features are

.7. SACF i i
crucial in guiding the fusion process. By incorporating these features, 4.7. SACF performance under challenging scenarios

our method can leverage prior knowledge and adaptively fuse the To evaluate the effectiveness of the Self-Adaptive Consistency Filter-

complementary depth information. This adaptive fusion process leads ing (SACF) mechanism in retaining critical yet low-quality samples, we
to more accurate and reliable depth estimation results. construct three challenging subsets from the KITTI dataset: low-light
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Category

A. Retention of Challenging Samples by SACF
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C. Consistency Score Distribution and Filtering Outcome

Fig. 11. Quantitative analysis of SACF’s effectiveness across challenging training conditions. (A) Retention rates of low-light, small obstacle, and boundary-rich
samples after filtering. (B) RMSE comparison between models trained with and without SACF across the same subcategories. (C) Distribution of saliency-depth
consistency scores (S-measure) for retained and filtered samples, showing SACF’s structural selectivity.

Sets ape anNe ake3D
Metrics [Abs Rell  RMSE! § < 1.257Abs Reld| RMSE! § < 1.251|Abs Reld| RMSE! |6 <1.25T
(AR ES 0.065 | 2.135 | 0.963 | 0.126 | 0.571 | 0.905 | 0.365 | 7.858 | 0.852
0.058 | 2.075 | 0971 | 0.118 | 0.563 | 0.916 | 0.392 @ 7.781 | 0.863
0.059 2.092 0.968 | 0.115 0.545 | 0.912 | 0.387 | 7.669 | 0.871
C 0.061 | 2.143 | 0.965 | 0.117 | 0.558 | 0.909 | 0.376 | 7.894 | 0.855
Ours 0.055 | 2.013 | 0.975 | 0.112 | 0.525 | 0.913 | 0.394 | 7.241 0.876

Fig. 12. Performance comparison across Cityscapes, ScanNet, and Make3D benchmarks to evaluate the generalization ability.

scenes, small obstacle scenes, and boundary-rich structures. As shown
in Fig. 11, SACF retains 74.3%, 69.4%, and 81.5% of samples in these
categories, respectively, demonstrating its ability to balance between
filtering out noisy samples and preserving semantically important but
structurally imperfect data.

Fig. 11-B presents the RMSE performance across the three subsets,
comparing models trained with and without SACF. We observe con-
sistent improvements: in low-light scenes, RMSE drops from 2.027 to
1.926; in small obstacle scenes, from 2.109 to 1.995; and in boundary-
rich scenes, from 1.896 to 1.812. These results confirm that SACF
enhances depth estimation performance in challenging conditions by
improving boundary accuracy and reducing prediction noise, thereby
strengthening the model’s robustness in real-world environments.

To further validate the structural soundness of SACF’s filtering
behavior, we conduct a consistency distribution analysis based on
saliency-depth alignment, as shown in Fig. 11-C. Specifically, we com-
pute a structural consistency score using the S-measure, a metric that
evaluates the alignment between the RGB saliency map (reflecting
semantic structures) and the depth gradient map (capturing geometric
boundaries). S-measure combines region-aware and boundary-aware
similarities; a higher score indicates better alignment and more coher-
ent structure between the two modalities. We group all samples based
on whether they were retained or filtered by SACF, and examine their
distribution across S-measure intervals. Results show that samples with
S-measure >0.6 are predominantly retained, while structurally noisy
or misaligned samples are more likely to be removed. This confirms
that SACF’s decisions are not based on subjective heuristics, but on a
quantifiable, interpretable, and task-relevant alignment criterion.

In summary, SACF demonstrates strong effectiveness in retaining
structurally valuable samples, improving depth estimation accuracy,
and filtering out misleading data. By enhancing the structural quality of
training inputs, SACF improves generalization in complex environments
and proves particularly beneficial in safety-critical scenarios such as
autonomous driving.

4.8. Generalization evaluation across diverse datasets
To comprehensively assess the generalization ability of our method

across diverse domains, we additionally evaluate on three represen-
tative monocular depth estimation datasets beyond KITTI and NYU:
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Cityscapes (Cordts et al., 2016), ScanNet (Dai et al., 2017), and
Make3D (Saxena et al., 2008). These datasets differ significantly in
scene layout, visual complexity, and depth characteristics. Cityscapes
comprises high-resolution street-level urban scenes with dynamic ob-
jects and strong lighting, testing robustness under real-world
autonomous driving conditions. ScanNet contains indoor scenes with
weak textures, occlusions, and variable viewpoints, challenging depth
inference under noisy structural priors. Make3D consists of outdoor
natural scenes with large depth ranges and sparse geometry, suitable
for assessing performance in long-range estimation tasks.

We compare our method against recent state-of-the-art approaches
including NeW CRFs, Trap, HA-Bins, and CFB using three standard
metrics: Abs Rel, RMSE, and § < 1.25. As shown in Fig. 12, our
method achieves the best or highly competitive performance on all
datasets. Specifically, on Cityscapes, we obtain the lowest Abs Rel
(0.055), lowest RMSE (2.013), and highest § < 1.25 accuracy (0.975).
On ScanNet, our model achieves an RMSE of 0.525 and 6 < 1.25 of
0.913, surpassing all other methods. On Make3D, our RMSE drops to
7.241 while maintaining strong accuracy at 0.876, indicating superior
long-range depth reasoning. These results confirm that our framework
generalizes well to diverse and unseen environments with varied se-
mantic and geometric distributions, highlighting its robustness and
practicality for real-world deployment.

4.9. Limitations

While the SharpEdge appears to be promising in addressing the
limitations of existing monocular depth estimation methods, it is es-
sential to acknowledge some potential limitations of the proposed
approach: (1) The self-adaptive consistency filtering technique used in
SharpEdge aims to select “valuable” training image pairs by prioritiz-
ing informative samples. However, the effectiveness of this technique
heavily relies on the accuracy and reliability of the saliency estima-
tion. Suppose the saliency estimation is imprecise or biased. In that
case, it may lead to the exclusion of potentially valuable training
samples or the inclusion of irrelevant ones, which could impact the
model’s overall performance. (2) The benchmark datasets, such as
KITTI and NYU, are commonly used to evaluate the performance of
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depth estimation algorithms. However, these datasets may only par-
tially represent various real-world environments and scenarios. The
effectiveness of the SharpEdge framework in generalizing to diverse
and unseen environments beyond the benchmark datasets remains to
be thoroughly evaluated. (3) The potential instability introduced by
the model’s dependence on dual priors—semantic saliency and geo-
metric gradients—across diverse visual scenes. Our Dual-Prior Learning
framework relies on parallel branches to model saliency- and gradient-
based information, with an adaptive fusion mechanism to reconcile
their contributions. However, due to the fundamentally different nature
of these priors (high-level semantic versus low-level structural), incon-
sistencies between them can emerge in complex or ambiguous scenes.
For example, a textured background may exhibit strong gradients but
low saliency, while a blurry foreground object might be salient but
lack clear edge cues. In such cases, the adaptive fusion may struggle
to resolve contradictory signals, potentially leading to inaccurate or
softened boundary predictions. Furthermore, the explicit decoupling
of the two priors means that their respective errors cannot be easily
compensated during joint learning, especially under challenging input
conditions. While the proposed design improves edge recovery in typi-
cal settings, this lack of coordination between priors introduces a form
of structural uncertainty, which could limit generalization in unseen
or adversarial scenarios. This insight suggests that future work may
benefit from exploring more integrated or cooperative prior modeling
mechanisms that can better resolve conflicts and share complementary
cues dynamically.

5. Conclusion

SharpEdge is a pioneering framework that enhances monocular
depth estimation for autonomous applications by producing depth maps
with sharper and more accurate edges. Utilizing the Self-Adaptive
Consistency Filtering and Dual-Prior Learning strategies, SharpEdge
effectively selects high-quality training data and integrates geometric
and semantic edge information. This results in superior performance on
autonomous benchmark like KITTI, as well as robust results on the NYU
indoor dataset, demonstrating its versatility. Our experiments show that
SharpEdge outperforms existing methods, making it highly suitable for
autonomous driving, traffic monitoring, and safety systems. Its ability
to achieve high accuracy with limited training data further underscores
its practicality for real-world traffic environments.

Future work will explore incorporating additional visual cues such
as texture and semantic information to further boost depth estima-
tion accuracy and robustness. Enhancing the saliency-based sample
selection will also improve the reliability of SharpEdge, ensuring its
continued effectiveness in dynamic and complex autonomous scenar-
ios. SharpEdge holds significant potential for advancing traffic system
technologies and the development of safer autonomous vehicles.
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