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Abstract. RGB-D Salient Object Detection (SOD) is a challenging task in computer vision, and deep architectures5

have been widely adopted in previous studies. However, current convolutional neural network (CNN)-based models6

struggle with capturing global long-distance features efficiently, while Transformer-based methods are computation-7

ally intensive. To address these limitations, we propose a non-convolutional feature encoder. This encoder captures8

long-distance dependencies while reducing computation costs, making it a potential alternative to CNNs and Trans-9

formers. Additionally, we introduce a spatial info enhancing mechanism to overcome weakened local information10

while capturing long-range dependencies. This mechanism balances local and global information at different expan-11

sion rates by exploring multi-scale feature fusion in the feature maps. Furthermore, we introduce a spatial info sensing12

module to enhance the compatibility of multi-modal features in long-range dependencies and extract informative cues13

from depth features. Through comprehensive experiments on four widely used datasets, we demonstrate that our pro-14

posed Involution Encoder significantly outperforms previous state-of-the-art RGB-D salient object detection methods15

based on CNNs in four key metrics. Compared to Transformer-based methods, our approach balances speed and16

efficiency favorably.17
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1 Introduction21

RGB and Depth Salient Object Detection (RGB-D SOD) is an essential and important task in com-22

puter vision, which aims to detect and highlight the most salient objects in images RGB and Depth.23

It is useful in many computer vision tasks, e.g., object segmentation,1–3 tracking,4–6 image/video24

compression,7–9 autonomous driving, augmented reality, and robotics. Previous works mainly rely25

on sole RGB images to detect salient regions, called RGB SOD,10 which has been proven to be lim-26

ited in some scenarios, such as similar foreground and background, cluttered/complex background,27

or low-contrast environments.28

As the depth cameras develop, depth information can be a supplement to help locate salient29

regions more accurately. Most recent deep learning-based fusion methods can be categorized into30
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three types: 1) input fusion, 2) late fusion, and 3) mid fusion. Though input and late fusion31

have advantages, they usually perform very poorly due to the absence of feature interaction. Thus32

the current mainstream SOTA models11, 12 have concentrated more on mid fusion to mine how to33

integrate RGB cues and depth (D) cues more sufficiently and completely.34

Nevertheless, merely concerning the fusion process maybe not be enough, which has presum-35

ably overlooked the global context information when extracting features. Because current typical36

encoders, such as ResNet13 and VGG,14 are based on the CNN architecture, which is weak in37

modeling long-distance dependencies and capturing the large receptive fields. Also, the informa-38

tion between channels is redundant. As DETR15 introduces Transformer from Natural Language39

Processing to Computer Vision, Transformer-based encoders become increasingly popular. It’s a40

non-local model with self-attention and cross-attention layer to capture long-range dependencies in41

an image and has helped Transformer-based RGB-D methods achieve excellent results. In address-42

ing the computational resource requirements of Transformer-based methods and their impact on43

efficiency and practicality, recent efforts have explored alternative architectures. For instance, Li44

et al.16 proposed Involution, a non-convolutional architecture that utilizes involution kernels gen-45

erated based on individual pixels rather than connections with neighboring pixels. Even relatively46

simple involution structures can achieve a competitive balance between accuracy and computa-47

tional cost.48

Motivated by Involution, this paper introduces a novel and efficient non-convolutional fea-49

ture encoder network (NCFE-Net). NCFE-Net stands out due to its unique design, which inte-50

grates involution into existing convolution-based feature encoders, transforming them into non-51

convolutional feature encoders. This design enables the model to capture long-range dependencies52

with minimal computational requirements. To further address the issue of weakened local in-53
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formation during the capture of long-range dependencies, NCFE-Net incorporates a spatial info54

enhancing mechanism (SIE). By automatically exploring multi-scale information in feature maps,55

SIE balances incorporating local and global information at different expansion rates, leading to im-56

proved model performance. Additionally, to enhance the compatibility of multi-modal features and57

improve the expressive power of depth features in capturing long-range dependencies, NCFE-Net58

integrates a spatial info sensing module (SIS). This module refines and strengthens the input multi-59

modal features, extracting more informative clues and effectively enhancing the model’s overall60

performance.61

To summarize, the main contributions of this work are four-fold:62

• A novel non-convolutional feature encoder is designed to capture long-range dependencies63

while reducing computational requirements, achieving a balance between speed and accu-64

racy;65

• A novel and effective spatial info enhancing mechanism is proposed, which explores multi-66

scale feature fusion and ensures a balance between local and global information at different67

sampling rates within the feature maps;68

• A spatial info sensing module is introduced to enhance the compatibility of multi-modal fea-69

tures and extract informative clues from depth features in capturing long-range dependencies70

more effectively;71

• Extensive experiments are conducted on four publicly available datasets, demonstrating the72

effectiveness and superior performance of the proposed network; Both codes and results will73

be publicly available, which has the potential to benefit our research community in the near74

future.75
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2 Related Work76

2.1 CNN-based RGB-D salient object detection77

Traditional methods in image saliency detection heavily rely on handcrafted features17–32 and in-78

corporate various saliency priors, such as contrast priors, image background priors, and object79

priors. In 2017, Zhu et al.18 utilized the center-dark channel prior method, which generates a80

center-dark channel mapping by computing center saliency priors and dark channel priors. The81

initial saliency map is then fused with the center-dark channel mapping to obtain the final saliency82

map. In 2018, Zhu et al.17 introduced a deep mining-based multi-layer backpropagation saliency83

detection algorithm that utilizes depth cues from three different levels of the image. However,84

these methods overlook the inherent differences between RGB and depth modalities, leading to85

potentially unreliable results, particularly in detecting small objects.86

The advent of deep learning has revolutionized the field, with convolutional neural network87

(CNN) based methods33–40 taking the lead. Among them, fusion methods 41–45 have made signifi-88

cant strides in RGB-D saliency detection and achieved remarkable performance. Notably, in 2020,89

Li et al.50 proposed an interactive adaptive fusion method that enhances high-level RGB and depth90

features, distinguishing cross-modal features from different sources and reinforcing RGB features91

with depth features at each level. Cong et al.48 introduced a metric to assess their reliability and92

utilized it for merging two prediction results. Song et al.46 performed multi-scale pre-segmentation93

on RGB-D pairs and proposed a multi-scale discriminative saliency fusion method to generate the94

final saliency map. For late fusion, Guo et al.47 iteratively propagated the initial saliency map95

obtained through multiplication to produce the final saliency map. To account for the quality of96

depth maps, Moreover, for mid-level fusion, Fan et al.49 employed a dual-stream structure to trans-97
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form cross-modal features and fuse cross-layer features, explicitly filtering out low-quality depth98

maps using a gating mechanism. In 2021, Chen et al.51 integrated a depth quality perception sub-99

network into a classical dual-stream structure and assigned weights to depth features before fusion,100

facilitating effective RGB and depth information fusion.101

However, most current saliency detection methods are primarily based on CNN architectures,102

which limit their ability to capture long-range dependencies. Some methods integrate global and103

local information to achieve accurate salient region detection. For example, Zhang et al.52 pro-104

posed a framework that considers the complementarity of global positions and local details from105

two modalities, yielding good results. However, these methods still struggle to fully capture the106

advantageous relationships between features. To address these limitations, a novel feature encoder107

is proposed, which utilizes a non-convolutional encoder to capture global context and efficiently108

performs multi-scale feature fusion using an effective spatial info enhancing mechanism within the109

feature maps.110

2.2 Transformer-based RGB-D salient object detection111

The transformer was first proposed by.53 Once proposed, it quickly occupies a dominant position112

in Natural Language Processing (NLP), which is used to model global long-range dependencies,113

constantly refreshing records one after another. Building upon its success in various domains,114

including natural language processing, the Transformer architecture has recently been extended115

into computer vision, yielding remarkable results and solidifying its position. A crucial compo-116

nent within the Transformer architecture is self-attention, which plays a pivotal role in capturing117

robust features with long-range information by leveraging the interaction between feature self-118

information and weighted matrices. For instance, in 2020, Liu et al.54 proposes a hierarchical119
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Fig 1 Method pipeline of our approach. The major highlight of our approach is the proposed non-convolution feature
encoder, i.e., involution encoder, to solve the limitations of standard CNN in modeling long-distance dependencies
and capturing the large receptive fields.

transformer with a shift window scheme. In 2021, Liu et al.55 propose to make the model transmit120

more effectively across window resolution. Liu et al. 56 propose the triple transformer embedded121

module to learn cross-layer long-range dependencies to enhance high-level features. Tang et al.57
122

propose to capture significant and common visual patterns from multiple images. Ren et al. 58
123

propose a pure transformer-based encoder and a hybrid decoder to aggregate the features gener-124

ated by the transformer. In 2022, Wang et al.59 introduced a Transformer-based network to address125

the challenges of local operations in multi-scale and multi-modal fusion and capturing long-range126

dependencies. Although these methods have achieved performance improvements, they come at127

a significant computational cost. Some methods combine CNN and Transformer but may still128

encounter computational challenges. In contrast, the proposed novel feature encoder maintains129

competitive detection results while reducing computational costs.130
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3 Proposed Method131

3.1 Overview132

As is shown in Fig. 1, the key idea of our NCFE-Net is to replace the CNN-based encoder with a133

non-convolution feature encoder to make up for the limitations of the standard CNN in modeling134

long-distance dependencies and capturing the large receptive fields, which includes three main135

components: 1) dual-stream involution encoder (InEn); 2) spatial info enhancing (SIE); 3) spatial136

info sensing module (SIS). Details can be seen in the following Sec. 3.2, Sec. 3.4 and Sec. 3.3.137

3.2 Involution Encoder138

Existing backbones of RGB-D SOD methods mainly consist of encoder-decoder architectures,139

which are dominated by CNN-based networks, e.g., ResNet13 and VGG.14 Nevertheless, as shown140

in Fig. 1 (left bottom), CNN has there major limitations: 1) fixed convolutional kernel sizes and141

strides, which may result in information loss or redundancy in certain scenarios where the recep-142

tive field is not flexible enough; 2) they can capture better local features but struggle with global143

features in images, failing to capture long-range spatial dependencies; 3) they are highly sensi-144

tive to position and cannot capture rich feature representations on different orientations and scales,145

making them vulnerable to distortions caused by image rotations and flips, leading to distorted146

feature representations. These inherent limitations of CNNs have resulted in insufficient global147

context modeling and feature representation capabilities in most existing methods. Additionally,148

while Transformer-based RGB-D methods have achieved excellent results in capturing long-range149

spatial dependencies and rich feature representations, their main drawback is the requirement of150

substantial computational resources, limiting their practical efficiency.151
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To address these limitations, a novel non-convolutional feature encoder called Involuton En-152

coder (InEn) is proposed, primarily utilizing involution kernel.16 Compared to CNN, involution153

(Fig. 1 (left bottom)) can capture crucial features on local receptive fields of different sizes and154

orientations, enabling the learning of more abstract and complex feature representations, thereby155

enhancing the feature representation capability. Moreover, involution can adaptively adjust the156

convolutional kernel sizes and strides to accommodate various receptive field control requirements,157

effectively handling global image features.158

Specifically, the output feature map of involution is derived by performing multiply-add oper-159

ations on the input with involution kernels, which can be defined as:160

Yi,j,k =
∑

(u,v)∈△k

Hi,j,u+⌊k/2⌋,v+⌊k/2⌋,⌈kG/C⌉Xi+u,j+v,k, (1)

where X denotes the input feature map, and Y is the output feature map. △k refers to the set of161

offsets in the neighborhood considering convolution conducted on the center pixel, and H repre-162

sents involution kernels. Unlike convolution kernels, the shape of involution kernels H depends on163

the input feature map X.164

To be more precise, the computation process of the involution operation can be divided into165

two main steps: generating the involution kernel and performing the involution convolution.166

1) Generating the involution kernel: During the involution kernel generation step, all channel167

pixels at a particular spatial position are selected. These selected pixels undergo a transformation168

function and are then unfolded to obtain the involution kernel. This process ensures the creation of169

an effective involution kernel for subsequent convolution operations.170
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Fig 2 Visualization of the involution kernel generation process.

Xi,j : 1× 1× C
FC→ 1× 1× C/r

FC→

1× 1×
(
K2G

) reshape→ H : K ×K ×G

(2)

where FC represents fully connected operation, and reshape denotes reshaping operation. The171

symbols C, G, K, and r represent the number of channels, the number of groups, the kernel size,172

and the scaling factor, respectively. For a better understanding of the involution kernel generation.173

We have included a generation process diagram in the revised manuscript in Fig. 2.174

2) Computing involution: a multiply-add operation is performed, i.e., the involution kernel175

is firstly reshaped into a matrix, and then it is element-wise multiplied with the corresponding176

positions of the input feature map. Finally, all the K ×K elements of each channel are summed177

to replace the original pixel at that position.178

To construct the entire network using involution, we borrowed the design from ResNet and179

implemented it by stacking residual blocks. In the backbone of ResNet, the convolutions are180

replaced with involutions, while retaining all the convolutions for channel projection and fusion.181

These carefully redesigned components together form the non-convolutional backbone network,182

which is referred to as the Non-Convolution Feature Encoder Network (NCFE-Net). Then, we183

take the place of the convolution kernels with involution kernels in our encoders, e.g., ResNet50,184

and build an involution-based feature encoder.185
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3.3 Spatial Info Sensing186

There are two main problems when trying to fuse RGB and depth features. One is the compatibility187

of the two due to the intrinsic modality difference, and the other is the redundancy and noise in188

low-quality depth features. To address these issues, spatial info sensing (SIS) is proposed. The189

SIS module aims to enhance the compatibility of multimodal features in capturing long-range190

dependencies and extracting informative cues from the depth features.191

Specifically, as shown in Fig. 1, SIS consists of a channel attention CA(·) and a spatial at-192

tention SA(·), which captures long-range dependencies and extracting informative cues from the193

depth features in channel dimension and spatial dimension, being defined as:194

FDR(fi) =
(
fi ⊗CA(fi)

)
⊗ SA

(
fi ⊗CA(fi)

)
, (3)

where fi denotes the ith output feature of the depth encoder.195

The channel attention captures long-range dependencies for multimodal features by channel196

selection, which is achieved by the channel dimension’s global max pooling operation (GMPc (·)),197

a multi-layer perception (MLP(·)), and channel-wise multiplication (moc(·)). For input features f ,198

global max pooling operation retains their key channel information, then multi-layer perception199

selects the important channel information among them. Finally, channel-wise multiplication are200

performed to select import channel. The channel attention CA(·) can be represented as:201

CA(f) = moc

(
f,MLP

[
GMPc(f )

])
, (4)

where f denotes the input feature, GMPc is the global max pooling operation over the input202
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feature slice, MLP stands for a multi-layer perception, and moc(·, ·) performs channel-wise multi-203

plication between its input.204

The spatial attention SA(·) enhances the compatibility of multimodal features in extracting205

informative cues from the depth features, which is achieved by pixel-wise global max pooling206

operation (GMPs (·)), the convolution operation (Conv3(·)), and element-wise multiplication207

(ewm(·, ·)). For input features, pixel-wise global max-pooling operation down-samples them for208

reducing compute cost, the convolution operation extracts their spatial information. Finally, the209

element-wise multiplication obtains import spatial information clues. The spatial attention SA(·)210

can be represented as:211

SA(f) = ewm

(
f,Conv3

[
GMPs(f)

])
, (5)

GMPs is the pixel-wise global max-pooling over the entire input feature tensor, Conv3 is a 3×3212

convolution, and ewm(·, ·) performs element-wise multiplication between inputs.213

3.4 Spatial Info Enhancing214

The non-convolutional feature encoder, i.e., InEn, can capture long-range dependencies in features215

by using the involution operation to model global information. However, this process weakens the216

local information of the features. A potential solution to this issue is using Atrous Spatial Pyramid217

Pooling (ASPP), which captures multi-scale contextual information by employing dilated convo-218

lutions with different expansion rates. Nevertheless, ASPP fails to fully exploit the relationship219

between features with different expansion rates by simply concatenating features at all dilation220

rates.221

To overcome this limitation and improve the capture of intrinsic relationships between features222

by balancing local and global information at different expansion rates, a new method named spatial223
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info enhancing (SIE) is introduced. The SIE aims to fully utilize the multi-scale feature fusion of224

contextual information in the feature map by considering the relationship between features with225

different expansion rates. By incorporating SIE, the model can better capture and balance the226

intrinsic relationships between features using different dilation rates while optimizing the available227

information in the architecture.228

The traditional ASPP method involves five parallel branches. Initially, a 1 × 1 convolution is229

applied to all branches, which reduces the channel size to 32. The first branch then performs two230

consecutive convolution operations with kernel sizes of 3 and expansion rates of 1, 3, 5, and 7,231

respectively. The whole process can be denoted as follows:232

ASPP(f) = Concat
(
f

′
,DConv3d=i(f

′
)
)
,

⇑︷ ︸︸ ︷
Conv1(f)

⇑︷ ︸︸ ︷
Conv1(f)

(6)

where DConv3d=i(·) is the dilated convolution with expansion rates d = i (i ∈ 1, 3, 5, 7). f is233

the input feature. To implement SIE, two branches are utilized, as depicted in Fig. 1. The first234

branch involves element-wise multiplication between features with dilation rates of 3, 5, and 7 and235

features expanded at a rate of 1. The output features are then added together, which is defined as:236

f
′

1 =
∑

i∈{3,5,7}

DConv3d=1(f
′
)⊗DConv3d=i(f

′
), (7)

where
∑

denotes the element-wise summation and ⊗ is the element-wise multiplication. The237

second branch directly adds up the four features expanded at different rates. Finally, the features238

from both branches are concatenated to generate the final output feature map f
′
r, which can be239
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defined as:240

f
′

2 =
∑

i∈{1,3,5,7}

DConv3d=i(f
′
), (8)

241

f
′

r =
∑(

f,Concat
(
f

′

1, f
′

2,Conv1(f)
))

. (9)

Notice that our SIS can jointly excavate informative cues from depth features in multiple side-out242

layers. Component experiments (see Table 2) show the effectiveness of this approach in improving243

the compatibility of multi-modal features.244

The overall operation flow reveals that features with a dilation rate of 1 are used multiple245

times compared to features with expansion rates of 3, 5, and 7. This is because features with an246

expansion rate of 1 focus more on local information, whereas those with expansion rates of 3, 5,247

and 7 are sparser and concentrate more on global information. To balance the fusion of information248

between global and local scales, this spatial info enhancing fusion method balances multi-scale249

feature fusion and contextual information within the feature map. This significantly enhances the250

performance of ASPP and addresses the issue of weakened local information of features while251

capturing long-range dependencies.252

3.5 Interwoven Cascaded Decoder253

The multilevel cross-modal features computed from NCFE-Net are a fusion of RGB and depth fea-254

tures from multiple levels. To effectively utilize the multi-scale and multilevel information within255

each level for cascaded refinement, a lightweight decoding mechanism called the interwoven cas-256

caded decoder (ICD) has been implemented to integrate the multilevel cross-modal features. As257

illustrated in Fig. 1, the ICD comprises three spatial info enhancing modules and a straightforward258

feature aggregation strategy consisting of cascaded convolutions, element-wise multiplications and259
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channel-wise concatenations to extract global contextual information from cross-modal features.260

Compared to existing decoders, the ICD can simultaneously process multiple levels of infor-261

mation by utilizing multilevel information from both RGB and depth modalities. This allows the262

model to capture spatial and contextual information more effectively, leading to more accurate263

saliency predictions. The ICD consists of multiple stages, each responsible for aggregating infor-264

mation from different levels and modalities. Furthermore, the decoder has a cascading structure265

that enables the features from the previous layer to serve as inputs for subsequent stages. As in-266

formation propagates through the decoder, predictions are iteratively refined, improving accuracy.267

In addition to its cascading structure, the ICD introduces an interweaving mechanism that helps268

to better fuse information from RGB and depth modalities. This mechanism leverages the differ-269

ences in modality characteristics, allowing the model to capture complementary information better.270

In essence, the ICD decoder is a highly effective tool for improving the performance of RGB-D271

saliency detection models because it can process multilevel information and interweave informa-272

tion from different modalities. This results in better feature fusion and more accurate saliency273

prediction, making it a valuable asset to researchers and practitioners.274

4 Experiments275

4.1 Datasets276

We evaluate the effectiveness of our model on four widely used public benchmark datasets, i.e.,277

NJUD,60 NLPR,61 SIP,49 STEREO.62 NJUD60 includes 2,003 stereo image pairs with various res-278

olutions. Among these image pairs, 1,400 are used as the training set, 100 as the validation set,279

and the remaining as the testing set. NLPR61 consists of 1,000 images from 11 indoor and outdoor280

scene types. Among them, 650 images are used as the training set, 50 images as the validation set,281
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and the remaining 300 images as the testing set. SIP49 consists of 1,000 high-resolution images282

that cover diverse real-world scenes from various viewpoints, poses, occlusions, illuminations, and283

backgrounds. STEREO62 has 797 stereoscopic images. These images are mainly collected from284

the Internet and 3D movies. Depth images are generated by leveraging an optical method. Evalu-285

ating the proposed model on these datasets can validate its effectiveness, and its performance can286

be compared and analyzed objectively.287

4.2 Evaluation Metrics288

Three metrics are adopted for quantitative evaluation, including S-measure (Sm),63 F-measure289

(Fm),64 and mean absolute error (MAE). Specifically, S-measure is utilized to solve the problem of290

structural measurement from the perspective of region-aware and object-aware. F-measure offers291

a unified solution to evaluating non-binary and binary maps. The MAE denotes the average pixel-292

wise difference between saliency maps and the ground truth. These metrics can comprehensively293

evaluate the model’s performance in the saliency detection task. F-measure is an important per-294

formance indicator when precision rate conflict with recall rate, and it can be computed as Eq. 10,295

which shows the balance between precision rate and recall rate:296

Fm =
(β2 + 1)× PRE ×REC

β2 × PRE +REC
, (10)

where PRE represents the average precision rate, REC represents the average recall rate, and β2 =297

0.3 to balance the precision rate and the recall rate. S-measure is also called Structure-measure.298

The novel evaluation focuses on the region-wise and object-wise structural similarities, which is299
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Table 1 Quantitative comparison with current SOTA models on four widely-used datasets in terms of S, Fβ and
MAE (M). ↑ means that the larger the numerical value, the better the model, while ↓ means the opposite. The best
results are marked in bold.

Datasets NJUD NLPR SIP STEREO
Methods S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓

CNN-based

PCA 2018 0.877 0.844 0.059 0.873 0.794 0.044 0.842 0.824 0.071 0.880 0.845 0.061
CPFP 2019 0.878 0.877 0.053 0.888 0.822 0.036 0.850 0.818 0.061 0.871 0.827 0.054
DMRA 2019 0.886 0.872 0.051 0.899 0.855 0.031 0.806 0.819 0.085 0.886 0.868 0.047
cmMS 2020 0.900 0.897 0.044 0.915 0.896 0.027 0.872 0.877 0.058 0.895 0.879 0.043
ICNet 2020 0.894 0.843 0.052 0.923 0.908 0.028 0.854 0.791 0.070 0.891 0.847 0.046
SSF 2020 0.899 0.896 0.043 0.914 0.896 0.026 0.878 0.880 0.054 0.887 0.882 0.046
ATSA 2020 0.901 0.893 0.040 0.907 0.876 0.028 0.864 0.873 0.058 0.897 0.884 0.039
UCNet 2020 0.897 0.895 0.043 0.92 0.901 0.025 0.875 0.876 0.051 0.903 0.899 0.039
BBSNet 2021 0.919 0.899 0.037 0.926 0.878 0.028 0.874 0.874 0.056 0.909 0.886 0.041
ASIF 2021 0.889 0.888 0.047 0.906 0.888 0.030 0.857 0.859 0.061 0.868 0.893 0.049
MAD 2022 0.921 0.903 0.037 0.933 0.901 0.026 0.884 0.877 0.051 0.910 0.892 0.037
Mobilesal 2022 0.905 0.914 0.041 0.920 0.907 0.025 0.873 0.882 0.053 0.895 0.891 0.045

Ours 0.925 0.905 0.033 0.930 0.910 0.024 0.891 0.882 0.049 0.911 0.899 0.037

Transformer-based
GROUPTrans 2022 0.922 0.921 0.028 0.928 0.908 0.019 0.887 0.895 0.041 0.908 0.895 0.032
CAVER 2023 0.920 0.900 0.031 0.929 0.895 0.022 0.893 0.868 0.042 0.914 0.883 0.033

Ours 0.925 0.905 0.033 0.930 0.910 0.024 0.891 0.882 0.049 0.911 0.899 0.037

more similar to the human visual system. It can be formulated as:300

Sm = α× So + (1− α)× Sr, (11)

where we set α = 0.5 to balance the region-aware (Sr) and object-aware (So) structural similarity.301

The MAE is defined as:302

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|P (x, y)−GT (x, y)|, (12)

where W and H respectively represent the image width and image height; P represents the esti-303

mated saliency map and GT denotes the ground truth.304

4.3 Comparison with state-of-the-art models305

To demonstrate the effectiveness of the proposed method, we compare it with 12 state-of-the-306

art (SOTA) CNN-based RGB-D SOD methods, i.e., PCA,47 CPFP,65 DMRA,66 ICNet,48 SSF,52
307

ATSA,67 UCNet,12 BBSNet,68 ASIF,69 MAD,70 MobileSal,71 and two Transformer-based RGB-308
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D SOD methods, i.e., GroupTransNet,72 CAVER.73 The compared results are from the codes or309

saliency maps provided by the authors. The quantitative comparison results are shown in Table 1.310

It can be seen that our method performs the best on NJUD and NLPR datasets and shows compet-311

itive performance on STEREO and SIP datasets, which proves the effectiveness of the proposed312

NCFE-Net model. In particular, in terms of the S metric, our method consistently outperforms all313

other compared SOTA methods, e.g., 0.891 (ours) v.s. 0.878 in the SIP set. The superiority of our314

RGB-D Salient Object Detection method in terms of the S metric stems from the unique design315

of our non-convolutional feature encoder, which efficiently captures long-distance dependencies.316

Unlike CNN-based models that struggle with global feature representation, and Transformer meth-317

ods that are computationally heavy, our encoder is optimized for both efficiency and effectiveness.318

Additionally, our spatial info enhancing mechanism adeptly balances local and global information,319

utilizing multi-scale feature fusion for a more refined saliency detection. The spatial info sens-320

ing module further augments this by ensuring multi-modal features harmonize over long ranges321

and by extracting salient cues from depth features more effectively than existing methods. These322

innovations collectively contribute to our method’s exceptional performance on standard bench-323

marks. Also, we can find that our method outperforms all compared CNN-based RGB-D SOD324

methods. Our method shows competitive results on Transformer-based RGB-D SOD methods and325

achieves the trade-off between speed and efficiency at the same time, which would be discussed in326

Section 4.5.3.327

Fig. 3 presents visual comparison results of NCFE-Net with state-of-the-art representative328

models, highlighting the excellent performance of the proposed model in detecting single objects329

in low-contrast images in the first row. The second, third, and fourth rows show that the proposed330

model outperforms others in capturing salient regions with more complex objects, resulting in331

17



M
A
D

M
o
b
ile
Sa
l

C
A
V
ER

O
u
rs

G
T

D
R
G
B

Fig 3 Visual comparison between our method and several most representative SOTA models.
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clear boundaries. These results demonstrate the effectiveness of NCFE-Net in saliency detection,332

particularly in scenarios involving complex backgrounds and objects of different shapes.333

4.4 Component Evaluation334

We conducted an extensive component evaluation to confirm the major components’ effectiveness335

in our approach, as shown in Table 2. The results indicate that all components of our proposed336

algorithm contribute to improving the saliency detection performance.337

To provide more specific details, InEn (Sec. 3.2) plays a crucial role in capturing long-range338

dependencies and reducing model computation costs. It offers a viable alternative to CNN and339

Transformer architectures, and empirical evidence demonstrates its significant impact on improv-340

ing saliency detection performance. For instance, on the NJUD dataset, adopting NCFE increased341

the S metric from 0.869 to 0.899.342

Furthermore, including SIE (Sec. 3.4) has positively influenced the model’s performance. By343

incorporating multi-scale feature fusion in feature maps and balancing local and global informa-344

tion at different expansion rates, SIE effectively handles features with varying sampling rates,345

improving prediction accuracy. Experimental results reveal that replacing ASPP with SIE further346

Table 2 Components evaluation of S, Fβ and MAE(M) on the NJUD and NLPR dataset. The best results are marked in
bold. Where, Ba denotes baseline (CNN encoder). InEn denotes involution encoder. SIS denotes spatial info sensing.
SIE denotes spatial info enhancing. ASPP denotes atrous spatial pyramid pooling. R denotes our final version.

Key Components Datasets

Ba InEn SIS SIE ASPP
NJUD NLPR

S↑ Fβ↑ M↓ S↑ Fβ↑ M↓
1 ✓ % % % ✓ 0.869 0.804 0.084 0.881 0.857 0.076
2 % ✓ % % ✓ 0.899 0.873 0.061 0.892 0.877 0.065
3 % ✓ % ✓ % 0.910 0.890 0.061 0.915 0.894 0.039
4 % ✓ ✓ % ✓ 0.905 0.887 0.050 0.901 0.885 0.041
5 ✓ % ✓ ✓ % 0.916 0.892 0.043 0.919 0.902 0.036
R % ✓ ✓ ✓ % 0.925 0.905 0.033 0.930 0.910 0.024
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Fig 4 Visualization of the proposed components.

enhances the S metric on the NJUD dataset by 1.1%.347

While SIS (Sec. 3.3) marginally enhances performance, its contribution is smaller than SIE.348

For example, when applied to the NLPR dataset, using SIS improved the S-measure from 0.892349

to 0.901, whereas using SIE increased the S metric to 0.915, highlighting the superiority of SIE in350

enhancing cross-receptive spatial feature fusion.351

Finally, integrating the non-convolutional encoder with ASPP and SIE can significantly boost352

the overall model performance. Comparative experimental results demonstrate that the non-convolutional353

encoder works more effectively within the framework, underscoring its superior performance as a354

key component.355

In summary, the results of the component evaluation confirm that all proposed components356

significantly contribute to enhancing saliency detection performance. These findings highlight357

the importance of carefully selecting appropriate components and recognizing their impact on the358

overall algorithm’s performance. Notably, ASPP, SIE, and the involution encoder are key compo-359

nents that play a crucial role in improving performance. These findings emphasize the significance360

of selecting suitable components to develop high-performance saliency detection models.361

4.5 Ablation study362

4.5.1 Different Fusion Methods of SIE363

To assess the effectiveness of the proposed spatial info enhancing (SIE, Sec. 3.4) method, three364

experiments were conducted. These experiments compared only element-wise addition with dif-365
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ferent expansion rates (“Replace MUL.”), only element-wise multiplication (“Replace ADD.”), or366

a combination of the two while keeping the parameters consistent. The performance of each fea-367

ture fusion operation was recorded and presented in Table 3, which indicates that the combination368

of both operations (the proposed SIE method) produced the best performance. By contrast, the369

original ASPP method performed the worst, illustrating the efficiency and effectiveness of the pro-370

posed SIE method. This finding is reasonable because fusing feature maps with varying expansion371

rates can provide complementary information, thereby enhancing the representative ability of the372

model’s features.

Table 3 Ablation results of different fusion methods compared with spatial info enhancing (SIE). The best results
are marked in bold. “Replace ADD.” denotes replace all addition operations by multiplication operations; “Replace
MUL.” denotes replace all multiplication operations by addition operations.

Datasets NJUD NLPR SIP STEREO
Choices S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓
Classic ASPP 0.905 0.887 0.050 0.901 0.885 0.041 0.876 0.860 0.058 0.895 0.871 0.047
Replace MUL. 0.919 0.897 0.038 0.922 0.896 0.030 0.885 0.878 0.053 0.898 0.882 0.045
Replace ADD. 0.921 0.901 0.035 0.924 0.904 0.027 0.889 0.878 0.052 0.904 0.887 0.042
The Proposed SIE 0.925 0.905 0.033 0.930 0.910 0.024 0.891 0.882 0.049 0.911 0.899 0.037

373

4.5.2 Ablation study on Interwoven Cascaded Decoder374

To further evaluate the effectiveness of the proposed interwoven cascaded decoder (ICD, Sec. 3.5),375

we conducted additional experiments by comparing it with two alternative decoding mechanisms:376

element-wise addition and element-wise multiplication. In the element-wise addition mechanism,377

only element-wise addition is used to fuse features from different layers. In contrast, only element-378

wise multiplication is employed in the element-wise multiplication mechanism.379

Table 4 Effectiveness analysis of the interwoven cascaded decoder (ICD). The best results are marked in bold. “All
ADD./MUL. Operations” means all fusion operations in ICD are replaced by Addition/Multiplication operation.

Datasets NJUD NLPR SIP STEREO
Choices S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓ S ↑ Fβ ↑ M ↓
All ADD. Operations 0.915 0.895 0.047 0.921 0.902 0.028 0.888 0.865 0.058 0.901 0.879 0.048
All MUL. Operations 0.911 0.889 0.042 0.918 0.897 0.032 0.885 0.870 0.053 0.903 0.886 0.043
The Proposed ICD 0.925 0.905 0.033 0.930 0.910 0.024 0.891 0.882 0.049 0.911 0.899 0.037
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In these experiments, we employed 1 × 1 convolutions and upsampling operations to ensure380

that features from different layers have the same dimensions. Subsequently, the features were fused381

using either element-wise multiplication (“All MUL. Operations”) or element-wise addition (“All382

ADD. Operations”). The results of these experiments, as presented in Table 4, clearly indicate the383

superiority of the interwoven cascaded decoder (ICD).384

The results demonstrate that the interwoven cascaded decoder outperforms both alternative de-385

coding methods in terms of performance. This finding confirms the effectiveness of the interwoven386

cascaded decoder in integrating features from different layers and enhancing overall performance.387

4.5.3 Comparison with Transformer-based Methods388

It is worth mentioning that Transformer-based methods have demonstrated superior performance389

compared to the proposed NCFE-Net (Ours). However, these methods often require substantial390

computational resources and present challenges in terms of training. In contrast, while NCFE-391

Net may exhibit slightly lower performance than Transformer-based methods, it offers a favorable392

balance between performance, inference speed, and model size, as shown in Table 5.393

Currently, Transformer-based methods dominate the field of salient object detection. However,394

their computational requirements make it challenging to apply them in real-time applications or395

on devices with limited computing power. In contrast, the proposed NCFE-Net presents a viable396

alternative that delivers good performance while maintaining a relatively small model size and397

Table 5 Model size and speed analysis of Transformer-based methods and our non-convolutional-based method. The
bests are marked in bold.

Competitors UCNet cmMS MAD Ours GroupTrans CAVER
Model Size 119 MB 270 MB 310 MB 78 MB 140 MB 115 MB
FPS 42 15 52 51 37 28

CNN-based Transformer-based
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high inference speed (Frames Per Second, FPS). This advantage is especially valuable for practical398

applications prioritizing high speed and efficiency.399

By highlighting these considerations, it becomes evident that NCFE-Net offers a practical solu-400

tion that balances performance and computational requirements, making it well-suited for real-time401

applications and resource-constrained environments.402

Further, we have provided visual comparison between our method and other CNN-based and403

Transformer-based methods in terms of three challenging situations — “similar foreground and404

background, “cluttered/complex background”, and “low-contrast environments”. Results in Fig. 5405

demonstrate that our method outperforms the other methods in these challenging situations.406

In the case of “similar foreground and background” (line 1), our method successfully distin-407

guishes the foreground object from the background, while the other methods struggle due to the408

lack of clear visual separation.409

Regarding “cluttered/complex background” (line 2), our method shows superior performance410

by accurately detecting the object of interest amidst the complex surroundings. On the other hand,411

the other methods fail to achieve the same level of precision and tend to produce false positives or412

miss detections.413

In the case of “low-contrast environments” (line 3), our method exhibits robustness by effec-414

tively detecting objects even in situations with low contrast between the object and the background.415

Conversely, the other methods face difficulties in detecting objects under such conditions.416

4.6 Failure Cases417

We present some failure cases in Fig. 6. Despite our method’s promising results, two major chal-418

lenges still need to be addressed. Firstly, the method struggles to extract cross-modality features419
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Fig 5 Visual comparison between our method and other CNN-based (MAD) and Transformer-based (CAVER) meth-
ods in terms of three challenging situations.

fully and can be easily affected by poor features from a modality. Secondly, when dealing with420

images with complicated backgrounds, our method may highlight only certain parts of the scene421

rather than the entire salient region. In situations where false-alarm salient objects are present in422

the depth map, such as in the first row of Fig. 6, our method may struggle to detect these objects423

accurately. This is due to the difficulty in fully extracting cross-modality features, which can lead424

to the mistaken identification of false-alarm salient objects. In the bottom row of Fig. 6, we demon-425

strate how our method may only highlight certain parts of a scene with a complicated background.426

This occurs because the method can struggle to identify the entire salient region of an image with427

a complex background.428

While our method has shown promising results, further improvements are needed to address429

these challenges and improve its accuracy in difficult scenarios.430

5 Conclusions431

This paper introduces an innovative and effective method called the non-convolutional feature en-432

coder network (NCFE-Net) for RGB-D salient object detection. The network leverages involution433

to capture long-range dependencies while maintaining a smaller computational cost than Trans-434

formers. Additionally, the approach incorporates spatial info enhancing for multi-scale feature435
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Fig 6 Demonstration of some representative failure cases.

fusion to address the issue of weakened local information during the capture of long-range depen-436

dencies. A spatial info sensing module is integrated to refine the multimodal features to enhance437

compatibility further.438

The experimental results on four public datasets validate the superiority of the proposed NCFE-439

Net, e.g., an average increase of 0.4%, 0.3%, 0.7%, and 0.2% in terms of the S-measure metric of440

the four public datasets. It competes with and surpasses state-of-the-art methods in terms of accu-441

racy and efficiency. This demonstrates the potential of non-convolutional approaches in salient ob-442

ject detection, with NCFE-Net striking a favorable balance between performance and speed com-443

pared to CNN-based and Transformer-based methods. Overall, this approach opens up promising444

avenues for future research in salient object detection and holds potential for application in other445

computer vision tasks.446

Code, Data, and Materials Availability at: https://github.com/xl0312/InoSal447
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