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ABSTRACT. The rapid development of computer vision and deep learning has significantly
advanced image aesthetic assessment, yet traditional methods, which primarily rely
on low-level visual features such as color and texture, often struggle with the
complexity of graphic design images. These images are characterized by diverse
design elements, including color, typography, and layout, as well as various styles
such as minimalism, retro, and modernism, presenting substantial challenges to
conventional assessment techniques. To overcome these limitations, we propose
an innovative multimodal learning approach that integrates image content with
textual descriptions to comprehensively analyze the aesthetic qualities of graphic
design images. The core innovation of our method lies in the utilization of two distinct
textual description methodologies: holistic descriptions, which capture the main
theme of the design, and detailed descriptions, which focus on specific aspects
such as composition, color, detail, and atmosphere. This dual approach allows for a
more nuanced and complete assessment of aesthetic value. To effectively merge
these descriptions with visual content, we introduce a feature similarity blending
mechanism that aligns and integrates features from both modalities, enhancing the
representation of aesthetic attributes. In addition, we employ a score bagging
technique to aggregate scores from multiple fused features, ensuring robustness
and reliability in the assessments. Our method is implemented within a multi-task
learning framework, enabling simultaneous prediction across multiple rating di-
mensions. Experimental results demonstrate that, compared with the state-of-the-art
TAHF method, our approach achieves notable improvements in Spearman’s rank
correlation coefficient—by 1.7%, 3.4%, and 2.6% on the HDDI, BAID, and TAD66K
datasets, respectively—along with consistent gains in Pearson’s linear correlation
coefficient and accuracy. Moreover, our method achieves these performance im-
provements with fewer parameters and lower computational complexity, highlighting
its efficiency and effectiveness in graphic design image aesthetic assessment.
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1 Introduction
The image aesthetic assessment (IAA) has long been a focal point in computer vision and deep
learning research, driven by the need to understand and evaluate the visual appeal of images
across various domains. For IAA, it can be classified into three types: natural IAA, artistic image
aesthetic assessment (AIAA) and graphic design IAA (GDIAA).
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Natural images typically capture scenes from the real world, focusing on aspects such as
composition, lighting, and realism. Traditional natural IAA (NIAA) methods, such as those pro-
posed by Refs. 1 and 2, have predominantly relied on low-level visual features such as color,
texture, and edge information. Although these methods have proven effective for evaluating natu-
ral images [Fig. 1(a)], they often fall short when applied to more complex image types, such as
artistic and graphic design images [Figs. 1(b) and 1(c)]. Artistic images [Figs. 1(b)] are created
with an emphasis on creativity, emotion, and expression, often following certain artistic styles
and principles. Existing methods for artistic IAA (AIAA)3,4 have achieved reasonable success by
effectively capturing essential aspects of artistic images, such as balance, contrast, and harmony.
These methods have been specifically designed to understand and evaluate the creative and
expressive elements that define artistic works, reflecting their unique aesthetic principles.
Graphic design images [Fig. 1(c)], however, present a different set of challenges. These images
incorporate a variety of design elements, including color schemes, typography, and layout, and
are characterized by distinct stylistic approaches such as minimalism, retro, and modernism.
Unlike artistic images, graphic design images are not only visually complex but also semantically
rich, often created with specific functional purposes in mind, such as communication, branding,
and user engagement.

The primary limitation of existing aesthetic assessment methods is their inability to capture
the nuanced interplay of these diverse elements in graphic design images. In addition, graphic
design images often follow strict guidelines and standards that are not typically present in artistic
images, making the evaluation criteria different and more complex. To effectively assess the
aesthetics of graphic design images, it is essential to develop methods that integrate both visual
and semantic features. By combining these sources of information, we can form a more com-
prehensive understanding of what makes graphic design appealing, accommodating its inherent
complexity and diversity.

In the realm of GDIAA, the dataset HDDI5 is frequently employed as the standard. Despite
being annotated by a diverse group of individuals with different social backgrounds and cognitive
levels, the dataset’s limitation lies in its approach to assigning a singular aesthetic score to the
images based on their themes. This constraint hinders the dataset’s capacity for nuanced analysis
of graphic design images, potentially impeding the model’s ability to determine an accurate aes-
thetic rating. Intuitively, a direct method to address this issue would involve re-annotating the
dataset with a more granular focus, such as visual expressiveness, user engagement, and emo-
tional resonance. However, this process is not only laborious but also costly, making it an imprac-
tical solution. The current challenge is how to obtain detailed content analysis of graphic design

(a) Natural Images (b) Ar�s�c Images

(c) Graphic Design Images

Fig. 1 Comparison demonstration of natural images (a), artistic images (b), and graphic design
images (c).
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images without engaging in the time-consuming and labor-intensive process of fine-grained data
annotation.

With the rise of Transformers in the field of vision,6 the gap between natural language and
images has gradually been bridged. Compared with images, the advantages of natural language
lie in its ability to capture abstract concepts and complex semantics more effectively. Natural
language can convey emotions, intentions, and contextual information, which are often challeng-
ing to communicate through visual features alone. Moreover, textual descriptions can detail
the choices and interactions of design elements, providing a comprehensive understanding and
explanation of the visual effects.

Thus, inspired by this, we propose leveraging textual descriptions to represent the detailed
content analysis of graphic design images. This approach not only mitigates the need for exten-
sive re-annotation but also enriches the feature space, allowing for a more comprehensive evalu-
ation of the aesthetic qualities. Textual descriptions offer several unique advantages for this
purpose: (1) Textual descriptions can convey complex and abstract concepts that are difficult
to quantify visually. For instance, they can describe the emotional tone, thematic elements, and
stylistic nuances that contribute to the overall aesthetic appeal of a design. (2) Although visual
features can capture color, texture, and basic shapes, textual descriptions can provide a more
granular analysis by detailing specific design elements such as typography choices, spatial rela-
tionships, and compositional techniques. This level of detail allows for a more comprehensive
evaluation of the design’s aesthetics.

The core innovation of our method lies in the utilization of two distinct textual description
methodologies (Sec. 3.3). Holistic descriptions capture the main theme and overall aesthetic
impression of the design, providing a broad context for evaluation. In contrast, detailed descrip-
tions focus on specific aspects such as composition, color, detail, and atmosphere, enabling a
granular analysis of the design elements. By incorporating both holistic and detailed descriptions,
our method achieves a more comprehensive assessment of the image aesthetics. To effectively
merge these descriptions with image content, we introduce the feature similarity blending (FSB)
mechanism (Sec. 3.4). This mechanism aligns features from both modalities, enhancing the rep-
resentation of aesthetic qualities. The blended features are then used to predict aesthetic scores
across multiple dimensions, reflecting various aspects of visual appeal. To ensure robust and
reliable assessments, we employ a score bagging (SB) technique (Sec. 3.5) that aggregates the
scores derived from multiple fused features, mitigating the impact of potential biases and incon-
sistencies. Our method is implemented within a multi-task learning framework, enabling the
simultaneous prediction of multiple rating dimensions. This approach enhances the accuracy
of individual assessments, offers a comprehensive view of the aesthetic qualities of graphic
design images, and also excels in traditional natural IAAs. In summary, our contributions can
be summarized as follows:

• We introduce a multimodal learning approach that integrates image content with textual
descriptions to comprehensively analyze the aesthetic qualities of graphic design images.

• We employ two distinct textual description methodologies—holistic and detailed—to cap-
ture both the overall theme and specific design elements, achieving a more thorough
assessment.

• We develop an FSBmechanism that aligns features from both visual and textual modalities,
enhancing the representation of aesthetic attributes.

• Experimental results suggest that our method achieves state-of-the-art performance on
both graphic design and natural image benchmark datasets, which demonstrates its
effectiveness.

2 Related Work

2.1 Natural Image Aesthetic Assessment
IAA is a multifaceted tool with broad applications across various domains such as search
engines, content ranking, and recommendation systems. It stands in contrast to technical quality
assessment, which is concerned with aspects such as image distortion, improper cropping, or the
presence of noise.7,8 Instead, IAA is dedicated to gauging the intrinsic aesthetic appeal of images,
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capturing the subjective and often intangible qualities that resonate with viewers and influence
their perception of beauty and artistic value. Early approaches1,2 primarily relied on low-level
visual features such as color, texture, and edge information to predict aesthetic quality. In the era
of deep learning, studies such as Refs. 9–14 have concentrated on data-driven approaches and
amassed extensive datasets that comprise images alongside human-assigned ratings. Leveraging
these datasets, Ref. 15 developed a ranking-based model, and Refs. 16 and 17 aimed to estimate
the true distributions of aesthetic scores.

Several other methods, Refs. 18–20 leveraged a combination of local and global image fea-
tures to enhance the predictive accuracy of aesthetic judgments. For instance, the RAPID18 model
integrated diverse inputs, including both global and local perspectives, to classify images based
on their aesthetic level. Further advancements have been made with models such as A-Lamp,19

which introduced an adaptive selection mechanism for multi-patches and incorporates layout-
aware attribute graphs to refine the aesthetic assessment process. MPada,20 on the other hand,
employed an attention-based mechanism that dynamically adjusts the importance of each patch
during training, thereby enhancing the efficiency of the learning process. Furthermore, VILA21

proposed to learn image aesthetics from user comments, exploring vision-language pretraining
methods to learn multimodal aesthetic representations. Li et al.22 proposed theme-aware visual
attribute reasoning by simulating the process of human perception in image aesthetics by per-
forming bilevel reasoning.

Despite these advancements, traditional methods for natural IAA often fall short when
applied to more complex and diverse graphic design images, necessitating the exploration of
more sophisticated approaches.

2.2 Artistic Image Aesthetic Assessment
AIAA poses unique challenges due to the subjective nature of art and the diverse range of styles
and mediums. However, in the realm of AIAA, there is a limited body of work. Earlier studies,
such as Refs. 23–26, relied on manually crafted features and utilized support vector machines
for classification purposes. More recently, researchers tend to utilize deep learning–based
methods.3,4,27–29 Among them, Yi et al.30 proposed to extract and utilize style-specific and generic
aesthetic information to evaluate artistic images. Shi et al.31 presented a novel approach called
semantic and style-based multiple reference learning for artistic and general IAA, which lever-
ages semantic and stylistic features of images through multiple reference learning and graph
reasoning to improve the prediction accuracy of artistic and general image aesthetics.

Although significant progress has been made in both natural and artistic IAAs, the complex-
ity and diversity of graphic design images require innovative methods that integrate multiple
sources of information to provide a comprehensive evaluation. Our proposed method leverages
these advancements by combining visual content with detailed textual descriptions, offering a
robust framework for assessing the aesthetic qualities of graphic design images.

3 Proposed Method

3.1 Preliminary
In the domain of aesthetic assessment for graphic design images, the integration of textual
descriptions is essential for capturing the multifaceted nature of visual appeal. Traditional
methods25,32 that rely solely on visual features often fail to encapsulate the abstract concepts
and complex semantics inherent in graphic design. To address this limitation, our approach
leverages textual descriptions that provide rich semantic information complementary to visual
features. We utilize textual descriptions from the perspectives of “main theme, composition,
color, detail, and atmosphere.” These aspects were chosen because they collectively provide
a comprehensive and nuanced understanding of visual aesthetics, addressing the holistic and
granular elements of design.

3.1.1 Main theme

The main theme of a graphic design image encapsulates the overall aesthetic impression and the
primary message intended by the designer. It provides a broad context and a general feel of the
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design, which is crucial for understanding its aesthetic direction. By capturing the main theme,
we can comprehend the overarching concept that ties all design elements together, ensuring a
holistic evaluation of the image’s aesthetic quality.

3.1.2 Composition

Composition refers to the arrangement of visual elements within the image, dictating their spatial
relationships and balance. According to the Gestalt principles of perception,33 the composition
significantly influences how viewers perceive and interpret the image. A well-composed image
guides the viewer’s eye smoothly across the design, enhancing its aesthetic appeal. Therefore,
assessing the composition is vital for understanding the structural integrity and visual flow of the
design.

3.1.3 Color

Color schemes play a pivotal role in evoking emotions and setting the mood of an image. Color
theory34 highlights the psychological impacts of different colors and their combinations. Colors
can influence viewers’ emotional responses and are fundamental to the image’s overall harmony
and appeal. By analyzing the color aspects, we can evaluate how effectively the color palette
contributes to the aesthetic quality of the design.

3.1.4 Detail

Details such as textures, patterns, and intricate elements add richness and depth to a design.
Theories such as the processing fluency theory35 suggest that an optimal level of detail and com-
plexity enhances the aesthetic experience by making the image more engaging and interesting.
Evaluating the details helps in understanding the intricacy and craftsmanship involved in the
design, which are critical components of its aesthetic value.

3.1.5 Atmosphere

The atmosphere or mood conveyed by an image plays a significant role in its aesthetic percep-
tion. Cognitive psychology research, including the affect-infusion model,36 indicates that the
emotional tone of an image can influence viewers’ judgments and overall experience. By assess-
ing the atmosphere, we can evaluate how effectively the design communicates its intended mood
and emotional impact, which is essential for a comprehensive aesthetic assessment.

The integration of textual descriptions from the perspectives of the main theme, composi-
tion, color, detail, and atmosphere can provide a holistic and detailed analysis of graphic design
images.

3.2 Method Overview
The key insight of our method is to leverage the power of multimodal learning by integrating
visual features with textual descriptions to achieve a more nuanced and comprehensive aesthetic
assessment of graphic design images. Figure 2 illustrates the method pipeline of our proposed
multimodal learning approach. Our approach comprises three main components: (1) textual
description generation (TDG, Sec. 3.3), (2) feature similarity blending (FSB, Sec. 3.4), and
(3) score bagging (SB, Sec. 3.5).

First, TDG generates holistic and detailed textual descriptions to provide rich semantic infor-
mation complementing visual features. Then, FSB aims to align and combine features from both
visual and textual modalities to enhance the representation of aesthetic attributes. Finally, SB
aggregates aesthetic scores from multiple fused features to ensure robust and reliable assessments
across multiple dimensions.

We employ two distinct methodologies to generate textual descriptions: holistic and detailed
descriptions. Holistic descriptions capture the main theme and overall aesthetic impression of the
design, providing a broad context for evaluation. In contrast, detailed descriptions focus on spe-
cific aspects such as composition, color, detail, and atmosphere, enabling a granular analysis
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of the design elements. These textual descriptions offer a rich semantic layer that complements
the visual features of the images.

To effectively combine visual and textual information, we introduce the FSB mechanism.
This mechanism aligns features extracted from both modalities, enhancing the representation of
aesthetic attributes. By blending features from the image content with those from the textual
descriptions, we create a unified feature space that encapsulates both visual and semantic char-
acteristics of the graphic design images.

For robust and reliable aesthetic assessments, we employ an SG technique. This technique
aggregates aesthetic scores derived from multiple fused features, mitigating potential biases and
inconsistencies. Our method is implemented within a multi-task learning framework, enabling
the simultaneous prediction of multiple rating dimensions. This comprehensive approach enhan-
ces the accuracy of individual assessments and provides a holistic evaluation of the aesthetic
qualities.

3.3 Textural Description Generation
Traditional methods for aesthetic assessment of graphic design images primarily rely on visual
features such as color, texture, and layout. Although these methods have proven effective for
natural and artistic images, they often fail to capture the complexity and diversity of graphic
design images. These images not only incorporate various design elements but also embody
distinct stylistic approaches that convey different themes and emotional tones. To address this
limitation, our approach leverages textual descriptions, which can capture abstract concepts,
complex semantics, and detailed design elements that are challenging to quantify visually.
By integrating both holistic and detailed textual descriptions, we aim to provide a more com-
prehensive analysis of graphic design images’ aesthetic qualities.

To implement this, we propose the TDG methodology, which is designed to create rich
semantic representations of graphic design images by generating both holistic and detailed
descriptions. These descriptions are generated by existing pretrained language-image models
(e.g., BLIP,37 ViLT,38 and GPT-3).39 The process is illustrated in Fig. 2-NEW1 and consists
of two steps, taking the graphic design image shown in Fig. 2 as an example.

First, holistic descriptions capture the main theme and overall aesthetic impression of the
design. They provide a broad context that encapsulates the general feel and intention behind the
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Fig. 2 Framework of the proposed method, which includes three main components. First, textural
description generation (Sec. 3.3) aims to generate holistic and detailed textual descriptions to
provide rich semantic information complementing visual features. Second, FSB (Sec. 3.4) aims
to align and combine features from both visual and textual modalities to enhance the representa-
tion of aesthetic attributes. Third, SB (Sec. 3.5) aggregates aesthetic scores from multiple fused
features to ensure robust and reliable assessments across multiple dimensions.
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design. To achieve this, we input general prompts into existing pretrained language-image mod-
els such as GPT-3. For instance, by inputting the prompt “Describe the main theme and aesthetic
impression of the image,” we can obtain a textual description such as

“This image is a poster for a movie or literary work, which combines natural landscapes with artistic
rendering of a human portrait, creating a mysterious, dark, and slightly eerie atmosphere.”

Second, detailed descriptions focus on specific design elements such as composition, color,
detail, and atmosphere. They offer a granular analysis of the visual components that contribute
to the aesthetic quality of the image. To achieve this, we input targeted prompts into existing
pretrained language-image models such as ViLT. For example, by inputting prompts such as
“Describe the composition of the image,” “Describe the color scheme of the image,” “Detail
the visual elements present in the image,” and “Describe the atmosphere conveyed by the image,”
we can obtain textual descriptions such as:

1. “The composition of the image features a silhouette of a human profile overlapped with
trees and birds. The title is centered, with text distributed on both sides, achieving a
balanced composition;”

2. “The color of the image features a silhouette of a human profile overlapped with trees and
birds. The title is centered, with text distributed on both sides, achieving a balanced
composition;”

3. “The detail of the image features that the textures of the trees and birds are clear and
geometric lines outline the human face, enhancing the sense of technology;”

4. “The atmosphere of the image features that the black-and-white tone and the double expo-
sure effect create a mysterious and tense atmosphere, with text adding a narrative element.”

By leveraging these pretrained models with specific prompts, we generate comprehensive
textual descriptions that encompass both the holistic and detailed aspects of graphic design
images, enriching the semantic representation.

3.4 Feature Similarity Blending
In the context of aesthetic assessment for graphic design images, the integration of visual and
textual features is crucial to capturing the full spectrum of aesthetic attributes. Although visual
features provide information about the color, texture, and layout of an image, textual descriptions
can convey abstract concepts, thematic elements, and stylistic nuances that are challenging to
quantify visually. To effectively combine these two modalities, we introduce the FSB mecha-
nism. This mechanism aligns and blends features from both visual and textual inputs, creating a
unified representation that enhances the aesthetic evaluation process.

The FSB is designed to align and merge features from visual and textual modalities, ensuring
a comprehensive representation of the aesthetic attributes of graphic design images. The process,
as illustrated in Fig. 2-NEW2, involves several key steps:

First, we extract features from both the image and textual descriptions using respective
encoders. For each type of description, we employ a text encoder (here, we use the text encoder
of CLIP40) to transform the textual information into feature vectors. Let Th and Td represent
the holistic and detailed descriptions, respectively. The encoded feature vectors are obtained
as follows:

For holistic descriptions

EQ-TARGET;temp:intralink-;e001;117;193ftheme
txt ¼ TxtEnðThÞ; (1)

where TxtEnð·Þ is the text encoder and ftheme
txt is the textural feature of the holistic descriptions.

For detailed descriptions
EQ-TARGET;temp:intralink-;e002;117;145

fcomp
txt ¼ TxtEnðTcomp

d Þ;
fcolortxt ¼ TxtEnðTcolor

d Þ;
fdetailtxt ¼ TxtEnðTdetail

d Þ;
fatmtxt ¼ TxtEnðTatm

d Þ; (2)
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where fcomp
txt , fcolortxt , fdetailtxt , and fatmtxt are the textural features of the detailed descriptions for com-

position, color, detail, and atmosphere, respectively. Tcomp
d , Tcolor

d , Tdetail
d , and Tatm

d represent the
detailed descriptions for composition, color, detail, and atmosphere, respectively.

Let I represent the image and fimg denote the visual features extracted using an image
encoder

EQ-TARGET;temp:intralink-;e003;114;675fimg ¼ ImgEnðIÞ; (3)

where TxtEnð·Þ is the image encoder. Here, we use the image encoder of CLIP.
The encoded textual features are integrated with the visual features extracted from the

image. To ensure compatibility and effective blending, both visual and textual feature vectors
are normalized (Norm). Normalized features from both modalities are then combined using the
Hadamard product (⊙) to obtain a similarity matrix (Sim)

EQ-TARGET;temp:intralink-;e004;114;591Sim ¼ NormðfimgÞ ⊙ NormðfntxtÞ; (4)

where fntxt denotes the textural features of the holistic and detailed descriptions. The term
is n ∈ ftheme; comp; color; detail; atmg.

Then, the similarity matrix is multiplied with normalized features from both modalities using
the tensor product (⊗). These operations enhance the interaction between the features, capturing
the synergy between visual and textual attributes

EQ-TARGET;temp:intralink-;e005;114;507Fi ¼ CAðSim ⊗ NormðfimgÞ; Sim ⊗ NormðfntxtÞÞ; (5)

where Fi (i ∈ f0; 1; 2; 3; 4g) means the blended feature (F0 for holistic descriptions, F1, F2, F3,
and F4 for detailed descriptions) applied to each set of textual features and their corresponding
visual features. This results in multiple fused feature vectors, each representing different aspects
of the graphic design image’s aesthetic attributes. CA is the cross-attention operation, which is
used to enhance the interaction between the visual and textual features. This mechanism allows
the model to focus on relevant parts of the image when considering textual information and vice
versa, thereby improving the quality of the fused features.

3.5 Score Bagging
In the context of aesthetic assessment for graphic design images, ensuring robust and reliable
evaluations is crucial. The aesthetic qualities of an image can be multi-faceted, incorporating
various aspects such as composition, color, detail, and atmosphere. To achieve a comprehensive
and accurate assessment, it is essential to aggregate the scores derived from multiple fused fea-
tures effectively. The SG mechanism is introduced to address this need, as illustrated in Fig. 2-
NEW3. This mechanism aggregates aesthetic scores from different blended feature vectors,
reducing the impact of potential biases and inconsistencies, and thus ensuring a more stable and
reliable assessment.

For each blended feature vector Fi (where i ¼ 0; 1; 2; 3; 4), a score Si is predicted using two
multi-layer perceptrons (MLPs). The MLPs take the fused feature vector as input and output a
predicted aesthetic score. This step ensures that each aspect of the image (captured by different
textual descriptions) contributes to the final aesthetic score. Each score Si is assigned a weight αi
based on the importance of the corresponding textual description in the context of aesthetic
evaluation. These weights are not learned but predefined to reflect the relative significance
of different aspects of the graphic design image, according to the Gestalt principles of percep-
tion33 and color theory.34 The rationale behind the specific values of αi is grounded in the under-
standing of how different design elements contribute to the overall aesthetic quality. Thus, we set
the weights of these textual descriptions as α0 ¼ 0.4 (for holistic descriptions), α1 ¼ 0.2,
α2 ¼ 0.1, α3 ¼ 0.2, and α4 ¼ 0.1 (for detailed descriptions), to ensure that the final aesthetic
score is a balanced and comprehensive reflection of the various contributing factors. The
weighted scores are then aggregated to produce a final aesthetic score. This aggregation process
ensures that the final score reflects a balanced combination of all individual assessments, reduc-
ing the impact of any single biased or inconsistent prediction. The final aesthetic score (score) is
computed as

EQ-TARGET;temp:intralink-;e006;114;87Si ¼ MLPðFiÞ; (6)
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EQ-TARGET;temp:intralink-;e007;117;724score ¼
X4

i¼0

Si × αi: (7)

To ensure that the final score is within a reasonable and interpretable range, a normalization step
is applied. This step adjusts the final score based on predefined criteria or learned parameters,
ensuring consistency across different images and assessments

EQ-TARGET;temp:intralink-;e008;117;664Score ¼ NormðscoreÞ: (8)

3.6 Loss Function
During the training phase, we employ L1 loss to optimize the parameters of the whole model,
which is defined as

EQ-TARGET;temp:intralink-;e009;117;591L1 ¼
1

Nz

XNz

i¼1

jyi − ŷij; (9)

where yi denotes the ground truth (GT) aesthetic score of the graphic design image xi
(i ¼ 1; 2; : : : ; Nz) and Nz represents the number of samples in the training dataset. ŷi is the pre-
dicted aesthetic scores. This loss function measures the absolute differences between the pre-
dicted aesthetic scores ŷi and the GT scores yi, aiming to minimize these differences during
the training process.

4 Experiments

4.1 Implementation Details
We implement our approach in Python with the Pytorch toolbox on an NVIDIA GeForce RTX
3090 (with 24G RAM). We optimize the network via stochastic gradient descent (SGD) with a
momentum of 0.9 and weight decay of 10−4. The learning rate is set to 0.001 and exponentially
decayed by 0.1 after each five epoch. During training, we resize the resolution to 384 and random
cropping to 256, adding random image flipping for data augmentation.

4.2 Datasets
In this work, the experiments are primarily carried out on the available graphic design image
dataset HDDI. The HDDI dataset5 is the first IAA dataset entirely composed of human-designed
digital images. It contains 140 images created using modern design tools such as Photoshop and
is categorized into four themes: font design, card design, logo design, and poster design. It scales
the number of votes into the [0.5, 5.5] score range, where 0.5 means the worst and 5.5 represents
the best. We use k-fold cross-validation to train our model. The dataset is randomly divided into k
disjoint subsets of the same size, where the k-1 subset is used as the training set to train the
model, and the remaining subset is used as the test set to test the model, and we set k ¼ 5 here.

Meanwhile, we also conduct experiments on artistic IAA datasets BAID and TAD66K.
BAID30 consists of 60,337 artistic images covering various art forms, with more than 360,000
votes from online users. It scales the number of votes into the [0, 10] score range, where 0 means
the worst and 10 represents the best. Following the common practice of Yi et al.,30 we split the
60,337 images in BAID into 53,937:6400 for training and 6400 for testing. TAD66K10 includes
1431 artistic images. We keep the same split with the original dataset for selecting 289 images as
test and the remaining 1142 images for training.

4.3 Evaluation Metrics
To evaluate score regression performance, following Ref. 30, we use two popular metrics:
Spearman’s rank correlation coefficient (SRCC) and Pearson’s linear correlation coefficient
(PLCC). SRCC measures the monotonic relationship between the ground truth and predicted
scores, ranging from −1 to 1. PLCC measures the linear correlation between the ground truth
and predicted scores, also ranging from −1 to 1. In addition, we convert both predicted and
ground-truth scores into binary class labels using a threshold of 3 (midpoint of the 0.5 to
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5.5 range) for HDDI and 5 (midpoint of the 0 to 10 range) for BAID and TAD66K to calculate
accuracy (ACC).

4.4 Performance Comparison

4.4.1 Quantitative comparison

We compare our proposed model with one state-of-the-art (SOTA) GDIAA method (TAHF),5

two SOTA artistic IAA (AIAA) methods (SAAN30 and SSMRL31), and six SOTANIAAmethods
(NIMA,16 MLSP,41 TANet,10 EAT,42 KZIAA,43 and HyperEmo44) on the SOTA open-source
AIAA datasets BAID and TAD66K, and GDIAA dataset HDDI. Note that most NIAA methods
are trained using EMD loss, which requires GT score distributions rather than only mean scores
for training. Therefore, we modify the code provided by the researchers of AIAA and GDIAA
methods and make them trainable on BAID and TAD66K.

From the experimental results in Fig. 3, it can be seen that our proposed method exceeds all
the NIAA, AIAA, and GDIAA method competitors in terms of all three metrics regarding the
three benchmark datasets, which demonstrates the superiority of our method. Traditional natural
IAA methods such as EAT, TANet, and HyperEmo perform reasonably well but fall short com-
pared with our proposed method, especially on the HDDI dataset. For instance, compared with
the SOTA NIAA method HyperEmo and AIAA method SAAN, in terms of the PLCC metric, our
proposed method has improved by 1.3%, 0.8%, and 0.7% (HyperEmo) and 3.2%, 11.4%, and
5.9% (SAAN) on the HDDI, BAID, and TAD66K datasets, respectively. These results suggest
the effectiveness of integrating image content with detailed textual descriptions to overcome the
limitations of traditional methods. By employing holistic and detailed descriptions, our method
captures both the overall theme and specific design elements, providing a comprehensive evalu-
ation framework.

Furthermore, the proposed method balances performance with computational efficiency.
Although some methods such as HyperEmo have high parameter counts (87.65M) and FLOPs
(140G), our method maintains a reasonable parameter count (32.11M) and FLOPs (21.64G)
while delivering superior performance.

4.4.2 Qualitative comparison

Figure 4 illustrates the qualitative performance of our proposed aesthetic assessment method by
comparing the GT and predicted (Pred) scores for a variety of graphic design and artistic images.
The quality is highlighted in different colors, where red denotes low-level and green denotes

Dataset HDDI BAID TAD66K Parameters FLOPs

Method SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑ (M) (G)

NIMA18 0.287 0.281 81.78 0.393 0.382 71.01 0.383 0.408 60.90 23.51 4.14

MLSP19 0.312 0.295 84.65 0.441 0.430 74.92 0.418 0.422 63.58 73.97 32.02

TANet22 0.326 0.306 85.70 0.453 0.437 75.45 0.349 0.357 45.32 13.88 2.01

EAT23 0.398 0.351 86.27 0.486 0.495 77.23 - - - 87.65 140

KZIAA24 0.405 0.352 84.67 0.523 0.567 78.24 0.471 0.481 66.56 - -

HyperEmo24 0.419 0.362 85.24 0.531 0.573 78.98 0.485 0.492 67.34 - -

SAAN23 0.385 0.343 82.11 0.473 0.467 76.80 0.425 0.440 65.01 30.81 18.25

SSMRL24 - - - 0.508 0.558 77.72 0.452 0.475 65.03 25.62 4.52

TAHF23 0.406 0.357 86.42 - - - - - - - -

Ours 0.423 0.375 87.68 0.539 0.581 79.76 0.491 0.499 68.05 32.11 21.64

Natural Image Aesthetic Assessment (IAA) Artistic IAA Graphic Design IAA

Fig. 3 Comparison with state-of-the-art open-source six NIAA methods, two AIAA methods, and
one GDIAA method on AIAA datasets BAID and TAD66k, and GDIAA dataset HDDI. ACC means
accuracy. “↑”: the higher the values, the better. The best results are marked in bold.
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high-level artistic aesthetics. The predicted scores closely match the GT scores across various
graphic design and artistic images, indicating the model’s accuracy in capturing the aesthetic
quality and stylistic details of both graphic designs and artistic images.

4.4.3 Cross-dataset evaluation

The generalization ability and robustness of IAA models are crucial for their practical applica-
tion. Therefore, in this experiment, we conducted cross-dataset validations by training the NIAA,
AIAA, and GDIAA models on the BAID dataset and testing it on the HDDI dataset without fine-
tuning, and vice versa. We selected several top-performing NIAA, AIAA, and GDIAA methods
for performance comparison. The results, shown in Table 1, demonstrate that the proposed
method maintains excellent generalization.

4.5 Component Evaluation
We conducted an extensive component evaluation to confirm the effectiveness of the major com-
ponents in our approach, as shown in Table 2. The results indicate that all components of our

(GT: 1.442  Pred: 1.506)(GT: 0.833  Pred: 0.898)

(GT: 3.405  Pred: 3.476)(GT: 4.084  Pred: 4.124)

(a)Graphic Design Images (b) Ar�s�c Images

(GT: 8.684  Pred: 8.835)(GT: 7.346  Pred: 7.295)

(GT: 1.779  Pred: 1.846)(GT: 3.753  Pred: 3.848)

Fig. 4 Graphic design image (a) and artistic image (b) aesthetic assessment prediction results.
The GT and predicted (Pred) scores are shown underneath each image. The quality is highlighted
in different colors; red and green denote low-level and high-level artistic aesthetics, respectively.

Table 1 Performance results of cross-dataset evaluation.

Method

Train on BAID and test on HDDI Train on HDDI and test on BAID

SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑

NIMA 0.173 0.168 54.67 0.285 0.231 48.26

TANet 0.187 0.175 56.23 0.293 0.256 49.76

HyperEmo 0.236 0.209 60.62 0.337 0.306 51.53

KZIAA 0.218 0.195 58.87 0.316 0.283 50.95

SAAN 0.192 0.179 56.36 0.308 0.264 48.57

Ours 0.264 0.217 62.21 0.375 0.312 52.53

“↑”: the higher the values, the better. The best results are marked in bold.
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proposed method contribute to improving the graphic design image assessment performance. We
directly input the images into an image encoder and then predict aesthetic scores as a baseline.

Line 2 shows that the combination of holistic textual descriptions [Eq. (1), Txth] with FSB
(Sec. 3.4) and SB (Sec. 3.5) significantly improves performance. For instance, on the HDDI
dataset, this combination increases the SRCC metric from 0.322 to 0.374 and the PLCC metric
from 0.293 to 0.326. This improvement highlights the importance of blending holistic textual
features with visual features to enhance the model’s understanding of aesthetic qualities. When
using detailed textual descriptions [Eq. (2), Txtd] with FSB and SB (line 3), there is a further
improvement in performance. On the HDDI dataset, the SRCC metric increases to 0.382, and the
PLCC metric rises to 0.331. This demonstrates that detailed descriptions, which capture specific
aspects of the design, contribute more effectively to the aesthetic assessment.

Integrating both holistic and detailed textual descriptions with FSB (line 4) shows substan-
tial performance gains. The SRCC and PLCC metrics on the HDDI dataset increase to 0.411 and
0.349, respectively. This indicates that combining both types of textual descriptions provides a
more comprehensive understanding of the aesthetic qualities, leading to better performance.

The combination of holistic and detailed textual descriptions with SB (line 5) also enhances
performance, with SRCC reaching 0.418 and PLCC achieving 0.356 on the HDDI dataset. This
further confirms the utility of using both types of descriptions and the robustness of the SB
technique.

The full integration of holistic and detailed textual descriptions, FSB, and SB yields the best
performance (line 6). On the HDDI dataset, the SRCC metric reaches 0.423, the PLCC metric
hits 0.375, and the accuracy is 87.68%. On the BAID dataset, this combination also shows the
highest metrics: SRCC of 0.539, PLCC of 0.581, and accuracy of 79.76%. This comprehensive
approach demonstrates the superior effectiveness of our proposed method.

4.6 Ablation Study

4.6.1 Effectiveness of the number of textural descriptions

To verify the effectiveness of the number of textual descriptions (Sec. 3.3) in our proposed
method, we conducted an extensive ablation study varying the number of textual descriptions
from one to four. The detailed results, as shown in Table 3, reveal the impact of the number of
textual descriptions on performance metrics across the HDDI and BAID datasets.

When only one textual description is used, the model achieves an SRCC of 0.414, a PLCC of
0.367, and an accuracy of 86.87% on the HDDI dataset. By increasing the number of textual
descriptions to two, the performance slightly improves. The SRCC on the HDDI dataset
increases to 0.417, PLCC to 0.368, and accuracy to 87.32%. Incorporating three textual descrip-
tions further enhances the model’s performance. The best performance is achieved when four
textual descriptions are used. The SRCC on the HDDI dataset reaches 0.423, PLCC 0.375, and
accuracy 87.68%. This confirms that incorporating multiple textual descriptions provides a

Table 2 Quantitative evidence of component studies.

Method

HDDI BAID

SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑

Baseline 0.322 0.293 70.57 0.456 0.418 69.42

Txth þ FSBþ SB 0.374 0.326 79.76 0.486 0.522 72.47

Txtt þ FSBþ SB 0.382 0.331 80.37 0.493 0.536 73.46

Txth þTxtt þFSB 0.411 0.349 84.27 0.514 0.562 75.63

Txth þ Txtd þ SB 0.418 0.356 85.49 0.521 0.571 77.46

Txth þ Txtd þ FSBþ SB 0.423 0.375 87.68 0.539 0.581 79.76

The best results are marked in bold.
“↑”: the higher the values, the better.
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comprehensive and nuanced analysis of the graphic design images, leading to the highest per-
formance metrics.

4.6.2 Different feature similarity blending methods

To verify the effectiveness of different FSB (Sec. 3.4) methods in our proposed approach, we
conducted an extensive ablation study. We compared the performance of three alternative blend-
ing methods: element-wise addition, element-wise multiplication, and feature concatenation,
against our proposed method. The results of these experiments are summarized in Table 4.

Using element-wise addition for FSB, the model achieves an SRCC of 0.415, PLCC of
0.367, and an accuracy of 87.23% on the HDDI dataset. When element-wise multiplication
is applied for blending features, the performance slightly decreases. Feature concatenation shows
better performance than the previous two methods. Our proposed method, which involves a more
sophisticated blending mechanism, achieves the best performance. On the HDDI dataset, the
SRCC reaches 0.423, PLCC 0.375, and accuracy 87.68%. The results highlight the importance
of an effective feature blending strategy to accurately capture the intricate relationships between
visual and textual features, ultimately enhancing the model’s ability to assess the aesthetic quality
of graphic design images.

4.6.3 Different score bagging methods

To verify the effectiveness of different SB methods (Sec. 3.5) in our proposed approach, we
compared the performance of three SB methods: averaging the predicted scores (average), adap-
tively adjusting the weight of each score during the model training process (adaptive), and our
proposed method. The results of these experiments are summarized in Table 5.

Using the average method for SB, the model achieves an SRCC of 0.413, PLCC of 0.366,
and an accuracy of 86.76% on the HDDI dataset. On the BAID dataset, the SRCC is 0.524, the
PLCC is 0.570, and the accuracy is 78.87%. This method, although simple, provides a decent
baseline but does not fully capture the nuances of the different feature contributions. The adaptive

Table 4 Ablation studies on different FSB methods (Sec. 3.4).

Method

HDDI BAID

SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑

Element-wise addition 0.415 0.367 87.23 0.528 0.570 79.14

Element-wise multiplication 0.411 0.363 86.92 0.525 0.566 78.41

Feature concatenation 0.418 0.371 87.31 0.533 0.578 79.47

Ours 0.423 0.375 87.68 0.539 0.581 79.76

“↑”: the higher the values, the better. The best results are marked in bold.

Table 3 Ablation studies on the number of textural descriptions (Sec. 3.3).

Method

HDDI BAID

SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑

1 0.414 0.367 86.87 0.529 0.569 78.53

2 0.417 0.368 87.32 0.533 0.571 78.87

3 0.419 0.372 87.51 0.537 0.576 79.12

4 (Ours) 0.423 0.375 87.68 0.539 0.581 79.76

“↑”: the higher the values, the better. The best results are marked in bold.
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SB method improves performance compared with the average method. The SRCC on the HDDI
dataset increases to 0.418, PLCC to 0.371, and accuracy to 87.04%. On the BAID dataset, the
SRCC is 0.531, the PLCC is 0.575, and the accuracy is 79.03%. The adaptive method adjusts
weights based on feature importance, leading to better performance. Our proposed SB method
achieves the best performance. On the HDDI dataset, the SRCC reaches 0.423, PLCC 0.375, and
accuracy 87.68%. On the BAID dataset, the SRCC is 0.539, the PLCC is 0.581, and the accuracy
is 79.76%. This method effectively combines scores derived from multiple fused features, ensur-
ing robust and reliable assessments.

4.7 Comparison of the Score Distributions
We also provide a detailed comparison of the score distributions generated by our approach
against other state-of-the-art methods on popular datasets. Upon analyzing the score distribution
on the HDDI dataset, as shown in Fig. 5, we observed that our approach closely aligns with the
GT distribution, particularly in the middle score range (approximately between scores 1 and 3).
This suggests that our method is more effective at accurately capturing the aesthetic quality of
images with medium scores. In contrast, other methods such as TANet and HyperEmo tend to
have more concentrated distributions in the high and low score ranges. This concentration could
lead to biases, resulting in overestimation or underestimation of certain images’ aesthetic scores.
Our method, by comparison, demonstrates a more balanced and realistic distribution. On the
TAD66K dataset, as shown in Fig. 6, our method also shows a score distribution that is more
consistent with the GT distribution across the entire score range, especially in the middle and

Fig. 5 Score distribution comparison on the HDDI dataset.

Table 5 Ablation studies on different SB methods (Sec. 3.5).

Method

HDDI BAID

SRCC↑ PLCC↑ ACC↑ SRCC↑ PLCC↑ ACC↑

Average 0.413 0.366 86.76 0.524 0.570 78.87

Adaptive 0.418 0.371 87.04 0.531 0.575 79.03

Ours 0.423 0.375 87.68 0.539 0.581 79.76

“↑”: the higher the values, the better. The best results are marked in bold.

Shi, Li, and Song: Beyond pixels: text-guided deep insights into graphic design. . .

Journal of Electronic Imaging 053059-14 Sep∕Oct 2024 • Vol. 33(5)



high score regions (scores 5 to 8). Other methods, such as TANet and HyperEmo, exhibit a
tendency to cluster scores in the lower ranges, which may distort the overall assessment of image
aesthetics. Our approach, with its smoother distribution, better reflects the actual variation in
aesthetic quality as observed in the GT distribution. These results underscore the effectiveness
of our proposed method in generating score distributions that more accurately represent the true
aesthetic qualities of images across different score ranges.

4.8 Bias Analysis of Score Bagging
To demonstrate whether our SB method has a bias (i.e., whether the scores tend to lean toward a
certain direction/attribute, e.g., composition, color, detail, atmosphere, main theme), we verify it
through the following experimental design. The experiment is mainly divided into two main
parts: the comparison between independent scoring and fusion scoring, and the bias analysis.
We selected 1000 images from the TAD66K dataset that encompass a variety of styles and aes-
thetic attributes for testing. For independent scoring, the model independently scores each attrib-
ute (composition, color, detail, atmosphere) of each image, obtaining a separate score for each
attribute (without integration). Then, the average of all independent scores for that attribute is
taken to obtain the average independent score for the attribute. For example, the average inde-
pendent score for the “color” attribute represents the average of the independent scores for the
color attribute across all test images. On the other hand, for fusion scoring, we combine the scores
of multiple attributes (e.g., composition, color, and detail) and derive a comprehensive score
based on the set weights or integration strategy. Then, this comprehensive score is compared
with the image’s performance on that attribute. The average integrated score is the average
of the integrated scores for all images on that attribute. For example, for the “composition” attrib-
ute, the average integrated score represents the average of the comprehensive scores on the “com-
position” attribute, obtained by integrating the scores of various attributes such as composition,
color, detail, atmosphere, and theme through the scoring integration mechanism. To be more
specific, the average independent score reflects the result of assessing a single aesthetic attribute
without considering other attributes, whereas the average integrated score reflects the perfor-
mance on that attribute after considering other attributes and combining the scores of various
attributes. The comparison between the two can help evaluate whether the scoring integration
mechanism has introduced bias toward certain attributes. As shown in Table 6, although a sig-
nificant positive bias was found in the composition aspect (p-value < 0.05), the bias in other
attributes is not significant. Even if there is some slight bias, the overall performance of the
integrated score is still highly correlated with the independent score, so the overall accuracy

Fig. 6 Score distribution comparison on the TAD66K dataset.
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of the scoring system is not greatly affected. It is up to the specific application scenario to decide
whether to make minor adjustments to these biases.

4.9 Limitations
Although our proposed method demonstrates significant advancements in the aesthetic assess-
ment of graphic design images, it is not without limitations. First, the reliance on high-quality
textual descriptions means that the accuracy of our method heavily depends on the quality and
detail of the textual data provided. Inconsistent or vague descriptions can potentially lead to
suboptimal performance. Second, although our FSB mechanism effectively combines visual and
textual features, it may still struggle with extremely abstract or highly subjective aesthetic ele-
ments that are difficult to quantify even with rich descriptions. In addition, our method requires
substantial computational resources due to the complexity of the multi-task learning framework
and the necessity of processing both image and textual data, which may limit its scalability and
real-time application in resource-constrained environments.

5 Conclusions
In this paper, we presented an innovative multimodal learning approach for the aesthetic assess-
ment of graphic design images, integrating image content with detailed textual descriptions to
overcome the limitations of traditional methods. By employing holistic and detailed descriptions,
our method captures both the overall theme and specific design elements, providing a compre-
hensive evaluation framework. The FSB mechanism enhances the representation of aesthetic
qualities by aligning features from both visual and textual modalities. Experimental results
demonstrate that our approach achieves state-of-the-art performance on both graphic design and
natural image benchmark datasets, underscoring its effectiveness and robustness. Despite some
limitations, for instance, the potential dependence on the quality of textual descriptions gener-
ated, the need for large-scale datasets with diverse design elements for better generalization, and
the higher computational resources required for multimodal integration, our method sets a new
standard for understanding and evaluating the visual aesthetics of graphic design images, offering
valuable insights for researchers and practitioners in the field.

Future work will focus on several key areas. Improving scalability will involve optimizing
the model architecture to reduce its computational demands, such as by implementing more effi-
cient feature extraction techniques and exploring model compression methods. In addition, we
plan to develop strategies for better generalization from smaller, less diverse datasets, potentially
through the use of transfer learning or data augmentation techniques.
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Table 6 Bias analysis of SB.

Attribute

Mean
independent

score

Mean
fusion
score

Difference
value (fusion
independence) Bias direction

Bias
saliency
(p-value)

Composition 3.45 3.60 +0.15 Positive bias 0.042

Color 4.10 4.00 −0.10 Negative bias 0.089

Detail 3.80 3.85 +0.05 Positive bias 0.153

Atmosphere 4.25 4.30 +0.05 Positive bias 0.125

Main theme 3.90 3.80 −0.10 Negative bias 0.078
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