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Robust Industrial Anomaly Detection via Style Shift
Estimation and Cascade Distillation
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Abstract—Knowledge distillation (KD) has demonstrated re-
markable performance in industrial anomaly detection (IAD)
field, but its immense potential is constrained by the trade-off
between generalization of normal sample and robustness of ab-
normal sample. High generalization often weakens the robustness
against anomalies, leading to overlooked defects, while enhancing
robustness can cause normality forgetting, where normal samples
are misclassified as anomalies. This dilemma stems from the
existing methods commonly assuming style invariance across
normal and abnormal areas, focusing solely on the abnormal
content information while style information is usually neglected
and put on the shelf. In this paper, our main novelty lies in
leveraging anomaly style shift estimation for enlarging abnormal
robustness while maintaining high normal generalization. This
is the first attempt to introduce the style information into
the knowledge distillation-based industrial anomaly detection
methods. By employing the bidirectional fusion of style and
content information, our approach achieves more comprehensive
and practical anomaly detection and localization results. Thus,
our method can provide a more balanced and robust solution
for the future industrial anomaly detection task. Experimental
results on the MVTec2D, MVTec3D, BTAD, and KolektorSDD2
datasets demonstrate that our method outperforms major state-
of-the-art (SOTA) methods in both accuracy and speed, with
image-level and pixel-level AUROC scores of 99.6% and 98.6%
on MVTec2D, respectively. Furthermore, the efficiency of our
method is validated in a real-world plastic crate defect detection
system on a logistics production line.

Index Terms—Industrial anomaly detection, anomaly localiza-
tion, defect detection, salient object detection

I. INTRODUCTION

W ITH advancements in industrial automation, manu-
facturers have significantly improved the quality of

goods, resulting in a notable disproportion of normal products
to abnormal ones [1], [2]. Nowadays, in the initial stages
of product manufacturing, it is often challenging to gather
sufficient defect samples to train supervised defect detection
models [3]–[5]. Therefore, unsupervised and semi-supervised
industrial anomaly detection (IAD) and localization [6]–[21]
are becoming increasingly crucial in the quality control of
industrial products.

Unsupervised industrial anomaly detection methods isolate
anomaly data by learning the distribution of normal data only.
These approaches essentially involve searching the normal
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Fig. 1. Leveraging the style information, our method can conquer the low
discrepancy issue of existing knowledge-distillation methods and accurately
identify these easily confused anomalous pixels. (A) Comparison of PRO
(per-region overlap), inference time, and training memory consumption (circle
size) across various industrial anomaly detection methods on the MVTec AD
benchmark [22]. Notably, RD* [23] is an optimized version of the RD [15]
model. (B) Visualization of the effect of the style information shift. The
qualitative results showcase the performance using style invariance (same
visual style between normal and anomalous regions) versus anomaly style
shift. (C) Discrepancy maps between teacher and student network comparing
results with and without style information.

template feature that most similarly matches the test data and
then calculating the differences to locate defects.

Among existing unsupervised industrial anomaly detection
methods, knowledge distillation-based (KD) [14]–[16], [24]–
[27] methods have gained significant attention due to their
simple model architectures and efficient performances, as
illustrated by the comparison in Fig. 1 (A). The core hy-
pothesis of KD model is that, during the training process for
a single category, the student network will only acquire the
representational capability of the pre-trained teacher network
for the specific category, failing to generalize to unseen data.

However, as research progresses [26]–[30], it has been
discovered that the overgeneralization of student networks is
uncontrollable, which reduces the interpretability of the T-
S model, and this paper designs a toy case to analyze this
issue. As shown in Fig. 2 (A), we directly integrate an out-of-
distribution (OOD) class data into the in-distribution (ID) data
to form a mixed class data. Given the large size of the OOD
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Fig. 2. The toy case and main scheme of the proposed robust industrial anomaly detection network. Toy case (A): combine the in-distribution (ID) class
data with out-of-distribution (OOD) class data into mixed class data. Left top & bottom (B & C): the forward & reverse distillation methods that infer the
mixed class data after training on the entire in-distribution data set. Right (D): our proposed robust industrial anomaly detection (RIAD) method that performs
anomaly detection via a multi-level student learning strategy.

sample image, which nearly occupies the entire ID sample, the
inference results of different models can more clearly reflect
the problem faced by the KD-based IAD methods in balancing
the generalization of ID data and the robustness of OOD data.
As it is illustrated in the left part of Fig. 2, since the Forward
T-S network [14] shares the same model architecture and input
data, there arises an issue of ID data overgeneralization caused
by “shared convolutional feature weights”, which enables the
student network to extract anomalous features from OOD data,
making it difficult to directly distinguish abnormal sample
from the normal class boundary. Reverse distillation [15]
seems a better alternative as it alleviates the shared feature con-
nection problem through feature representation compression
and reconstruction process. However, this method similarly
suffers from the overgeneralization problem, as it fails to fully
utilize normal content information in the restoration process,
overlooking the diversity of normal features. To address this
issue, recent methods [31], [32] incorporate normality memory
to enhance the robustness against OOD data. Nevertheless,
the low-quality normal features searched from the memory
bank can undermine the generalization of ID data, leading
to “normality forgetting”. In contrast to existing methods
that assume style invariance and ignore the vital role of
style information in IAD task, we highlight that leveraging
anomaly style shift information can enable the model to better
balance generalization and robustness. As illustrated in Fig. 1
(B), collaborating anomaly style shift enhances the distinction
between anomalous and normal regions, resulting in more
robust anomaly detection. Additionally, from a quantitative
standpoint, a high discrepancy map between T-S network can
be attained by using the style information, as demonstrated in
Fig. 1 (C).

Thus, in this paper, we decouple the complex AD task into
multi-level student learning tasks to fully utilize both style
and content information. As we can see in Fig. 2 (D), for the

structural-learning task, we propose a Style Shift Estimation
(SSE) approach that estimates coarse defects in OOD data
and transforms them into a style distinct from the ID image
domain. This challenges the cross-style feature extraction
capability of the student network without affecting the teacher,
increasing T-S discrepancies in abnormal regions by disrupting
their shared convolutional feature connection. For the logical
learning task, our view is that the fundamental cause of
“normality forgetting” is the close proximity between the T-
S networks. The pre-trained teacher network possesses such
abundant knowledge that the student network merely imitates
the output distribution of the teacher and forgets normality
memories. To resolve this, we draw from the idea that students
debate peers more than teachers. Thus, we propose training
the logical student without associating it with the teacher
network. Instead, we utilize the Learnable Normal Prototype
(LNP) along with our cascade distillation learning strategy,
relying solely on the knowledge of a basic student to prevent
memory forgetting about content information. We also design
a semi-online anomaly incremental learning (SOAIL) module
within the multi-level student learning scheme. The SOAIL
module enables the meaningful bidirectional fusion of style
and content information while continuously enhancing model
deployment effectiveness through human interaction in a semi-
supervised setting. The contributions of our work can be
summarized as follows.
• This study proposes a novel Robust Industrial Anomaly

Detection (RIAD) method, the first to consider style
information, which casts the complex AD task as multi-
level student learning tasks and can be applied to both
unsupervised and semi-supervised scenarios.

• RIAD incorporates four key components: the Style Shift
Estimation (SSE), Learnable Normal Prototype (LNP),
semi-online anomaly incremental learning (SOAIL), and
Cascade Distillation Learning modules. These modules
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are designed to prevent the “shared feature weights” and
“normality forgetting” problems, effectively balancing the
generalization and robustness of T-S network.

• Extensive experiments on the MVTec AD, MVTec-3D
AD, BTAD, and KolektorSDD2 benchmarks validate the
superior performance of our RIAD method. Specifically,
it achieves image-level and pixel-level AUROC scores of
99.6 and 98.6 on the MVTec AD dataset, respectively,
surpassing primary state-of-the-art methods in accuracy
and speed. Furthermore, we have validated its effective-
ness across unsupervised and semi-supervised settings in
a real-world industrial application.

The rest of this paper is organized as follows: in Section II,
the related work of industrial image anomaly detection is
introduced; the details of the RIAD method are represented
in Section III and we report all the experiment results in
Section IV; the Section V summarizes this paper.

II. RELATED WORK

This study surveys industrial image anomaly detection
methods from unsupervised and semi-supervised perspectives,
which are detailed below.

A. Unsupervised anomaly detection scenario

Unsupervised anomaly detection methods can be di-
vided into three categories: embedding-based [6]–[8],
reconstruction-Based [9]–[13], and knowledge distillation-
based methods [14]–[16], [24]–[27]. 1) Embedding-based
methods leverage various encoder models to extract high-
dimensional feature representations from test images. These
features are then compared against pre-stored normal feature
embeddings from training memory banks to detect anomalies.
These methods often rely on metric learning techniques like
nearest-neighbor searches [6] or distance metrics [7], [8]
to quantify the similarity between test and normal features.
Although the normal features of memory banks are diverse,
they tend to consume significant computational memory space,
which restricts the volume of the training set. Moreover, the
necessity to search through the entire memory bank results in
prolonged inference times, and the retrieved normal features
may not match correctly. 2) Reconstruction-based methods
train models to restore normal samples by leveraging pseudo-
anomalous data. During the testing phase, these models gen-
erate normal features that are compared with those of the
test images to identify anomalies. Typically, these methods
rely on advanced generative models such as Autoencoder
[9], [10], Generative Adversarial Network [11], and Diffu-
sion model [12], [13]. However, the effectiveness of image
reconstruction is often limited by the insufficient diversity of
pseudo-anomalous data, causing the model to struggle with
distinguishing whether distorted features represent anomalous
areas.

Compared to traditional reconstruction-based methods that
primarily focus on restoring normal features, 3) Knowledge
distillation-based approaches aim to enable the student net-
work to understand and retain normality knowledge. Methods
like Uniform T-S [14] use a forward distillation scheme where

the teacher and student networks compare cropped patches
of varying sizes, but this often leads to overgeneralization.
RD4AD [15] tackles this by using a reverse distillation scheme
that compresses and restores features, partially addressing
this problem but not fully solving normality forgetting. Other
methods like CDO [16], DeSTSeg [24], Pull&Push [25], and
RD++ [26] try to enhance anomaly localization by incorpo-
rating pseudo-anomalous data, but they still face challenges in
sustaining normal feature memory.

Recently, ASTN [27] introduced an asymmetric T-S network
to modify anomalous information representation. Still, teacher
knowledge during training often overwhelms the student’s
normality memory, affecting anomaly detection precision. By
comparison, our Cascade Distillation scheme prevents direct
teacher knowledge transfer, ensuring the student network ef-
fectively retains normality knowledge.

B. Semi-supervised anomaly detection scenario

In real industrial applications, foreground detection [33]–
[37] and salient object detection [38]–[42] are often employed
to eliminate complex background noise, thereby enhancing
the effectiveness of anomaly detection. However, the accuracy
of unsupervised anomaly detection remains limited. As a
result, semi-supervised anomaly detection methods [18]–[20],
which utilize a small amount of labeled anomalous data,
are increasingly applied in industrial scenarios where high
precision is required. In semi-supervised scenarios, DevNet
[18] focuses on learning deviations from normal patterns to
effectively distinguish between normal and anomalous sam-
ples. PRN [19], on the other hand, learns to differentiate ab-
normal features by generating multi-scale normal prototypes.
However, both methods struggle to address the imbalance
issue between normal and anomalous samples [20]. On the
contrary, our proposed SOAIL method addresses this challenge
by leveraging labeled anomalous samples to learn the fusion of
multi-level discrepancy maps. This approach allows for a more
robust and stable improvement in industrial anomaly detection,
especially when combined with human interaction.

III. ROBUST INDUSTRIAL ANOMALY DETECTION

A. The overview of the proposed method

The task of unsupervised anomaly detection is to identify
and locate anomalous regions in a query set Iq = {Iq1 , . . . , Iqn}
containing both normal and abnormal samples, based solely
on training with normal set It = {It1, . . . , Itn}. The goal
of knowledge distillation in the field of anomaly detection
is to remember the normality of the student network on
the training set and avoid excessive generalization to out-of-
distribution data. However, existing T-S networks [14]–[16]
overlook the issues of “shared convolutional feature weights”
and “normality forgetting”, which result in a consistently small
discrepancy between the T-S model.

As shown in Fig. 3, we propose Robust Industrial Anomaly
Detection (RIAD) as a solution to address the problems.

Our RIAD method primarily consists of four parts: a
basic Reverse Distillation (RD) student branch, a structure
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Fig. 3. The method architecture of our approach. The whole process could be divided into three stages: style shift estimation (SSE), learnable normal prototype
(LNP), and semi-online anomaly incremental learning (SOAIL) module.

learning student branch, a logical normal generation stu-
dent branch, and a semi-online anomaly incremental learning
module. Given an input sample I ∈ Iq , following reverse
distillation network [15], the multi-scale knowledge features
fkEp
∈ RHk×Wk×Ck are extracted by pre-trained ResNet [43]

encoder Ep and fed into bottleneck module for anomaly
embedding representation φb. Then we use a basic decoder
Db to restore the normal features fkDb

∈ RHk×Wk×Ck , where
Hk ×Wk denotes the spatial dimension, Ck is the number of
channels and kth indicates the layer index in the teacher and
student model. Mathematically, the basic student training loss
LB can be calculated as follows:

LB =

K∑
k=1

1−

(
fkEp

)T
· fkDb∥∥∥fkEp

∥∥∥ ∥∥fkDb

∥∥
 , (1)

where K = 3. The structural student Ds branch of our method
is conducted based on the “industrial style feature” and the
Style Shift Estimation (SSE) Approach. For the structural stu-
dent branch, we also train Ds via a similar process, obtaining
the loss LS . The logical student Dl branch is an AutoEncoder
architecture and is performed based on the Learnable Normal
Prototype (LNP). Notably, the logical student is trained solely
by the basic student, with the aim of acquiring globally
focused normal features. Finally, with the assistance of the
semi-online anomaly incremental learning module, the multi-
level discrepancy maps from the above three students and
the teacher are fused by an iterative anomaly integrator to
complete anomaly detection. Additionally, owing to the inter-
pretability of cascade distillation, our model can interact with
operators and continuously improve its performance through
few-shot incremental learning.

B. Style shift estimation based structural student branch

In the structural student, our proposed Style Shift Esti-
mation (SSE) Approach assumes that, compared to content
generalization, the student network is less adept at local style
generalization, thus exhibiting greater discrepancies from the
teacher network in regions with style changes [44]–[46]. Based
on this premise, in the structural student branch, our SSE first
alters the global style of all query set Iq , then employs local
anomaly priors to generate coarse anomaly masks Mc, which
are used to merge the predicted anomaly locations from the
original style images with the style-altered images, achieving
the local anomaly style shift.

1) Global industrial style transfer: For global image style
transfer, as we can see in the stage 1 part of Fig. 3, instead of
choosing various natural styles, we utilize the Relative Total
Variation (RTV) [47] to extract structural information while
smoothing texture information. Compared with the former,
the latter approach modifies the visual style of the industrial
sample image without affecting the inherent industrial style.
The objective function of RTV is expressed as follows:

argmin
R

∑
n

(Rn − In)
2 + ω ·

(
Tx(n)

Lx(n) + ε
+

Ty(n)

Ly(n) + ε

)
, (2)

where R is the industrial-style image, and (Rn−In)2 encour-
ages structural similarity to the query image. ω is a smoothness
weight; a grid search over [0.1, 0.9] (step 0.1) showed that
ω = 0.4 best balances structure preservation and texture
smoothing. T and L denote the windowed total and inherent
variation, respectively, and ε is a small constant to prevent
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Fig. 4. The demonstration of anomaly style shift estimation approach.

division by zero. And the formulas of T and L are as follows:
Tx = Gσ ∗ |∂xR|,
Ty = Gσ ∗ |∂yR|,
Lx = |Gσ ∗ ∂xR|,
Ly = |Gσ ∗ ∂yR|,

(3)

where Gσ is a Gaussian kernel with scale σ controlling its size
for structure extraction. Among [1, 2, 3, 4, 5], σ = 3 yielded
the best performance in most industrial scenarios.

2) Style shift estimation: Compared to the traditional RTV
method that relies on parameter optimization, we design
an end-to-end anomaly style shift estimation approach. As
shown in Fig. 4, synthetic data Is is generated using Perlin
noise Mp, texture anomaly At, and normal sample In. This
synthetic data Is then undergoes the RTV process, resulting
in an industrial-style synthetic sample Rs, which can be used
for training anomaly foreground prediction. To enhance the
detection capability of anomaly foregrounds, we employ an
advanced transfer model, which is trained using the industrial-
style synthetic sample Rs to predict the structural anomaly
foreground mask Mf from the input sample. The procedure
of mask generation is defined as:

SynData← SynFuse(In, At,Mp)︸ ︷︷ ︸
⇓

Mf = UnetViT(RTV(SynData)),

(4)

where SynFuse represents the anomaly feature fusion method
from [48], SynData denotes generated synthesis anomaly data
and UnetViT represents Unet-Transformer model [49]. The
cross-entropy loss is employed to train the UnetViT with the
difference between the generated mask Mf and the Perlin
noise Mp, which can be calculated as LM :

LM = −
∑
i

[
M i

f log
(
M i

p

)
+
(
1−M i

f

)
log
(
1−M i

p

)]
,

(5)

where i indexes each pixel of Mf and Mp. In the inference
stage, the coarse anomaly mask is fused with the input image
I and the industrial style image R to obtain the locally
transformed anomaly style image Ia ← SynFuse(I,R,Mf ).

The structural student branch of Fig. 3 shows the difference
between the test input image I and the local anomaly style
image Ia. It is clearly visible that the style difference between
the anomaly and the background is more pronounced in Ia.
Furthermore, we feed Ia into the teacher P and structural-
student Ds to obtain the structural T-S discrepancy map and

then project the top m features with the largest discrepancies
back to the patches of Ia. The image Ia after the anomaly
style shift estimation approach shows higher discrepancies in
anomalous pixels, and the features with the largest discrep-
ancies correspond to the style-transformed anomaly regions in
the original image. In contrast, the basic T-S discrepancy maps
for I exhibit erroneous anomaly classifications in the mapping
relationships.

C. Cascade distillation based logical student branch

The logical student branch is a crucial element of our
method, as it bears the core responsibility of the knowledge
distillation method in the field of industrial anomaly detection:
for any input sample, the student network can generate a
corresponding “perfectly” normal feature. As shown in the
stage 2 part of Fig. 3, we design a Learnable Normal Prototype
(LNP) module and a cascade distillation method to achieve this
target.

1) Learnable normal prototype: To obtain a unified normal
template, this module employs the “align & remember” strat-
egy for normality learning. Compared to existing alignment
methods, we use Adaptive Rotated Convolution (ARC) [50]
to learn the rotation angles of input features. Notably, in
the logical student branch, the pre-trained teacher is replaced
by autoencoder Ea. Thus, given the autoencoder features
fkEa

∈ RHk×Wk×Ck of the query image, ARC determines
the rotation angle θ and combination weight λ of the object
through a routing function Routing(·), which consists of
depthwise convolution, ReLU, pooling, and linear projection:

θ, λ← Routing(fkEa
). (6)

Then the original convolution kernels Wi can be rotated as
follows:

W ′i ← Rotate (Wi; θi) , i = 1, 2, · · · , n, (7)

where W ′i ∈ RCk×Ck×k×k(i = 1, 2, . . . , n) is the rotated
kernel, and Rotate(·) is the rotate procedure. Then, the aligned
feature gkEa

can be calculated as follows:

gkEa
= (λ1W

′
1 + λ2W

′
2 + · · ·+ λnW

′
n) ∗ fkEa

. (8)

After the feature alignment operation, we propose to learn
a set of normal representation features (named “prototypes”)
from the aligned features and generate normality priors to pro-
vide normal information. First, LNP projects the gkEa

to a set

of Ck-dimensional features ˇgkEa
=
{

ˇgkEa1
, ˇgkEa2

, . . . , ˇgkEaN

}
,

where N = Hk ×Wk is the total number of the input layer
features. Next, we initial U prototypes P = {p1, p2, . . . , pU}
and normality factors S = {s1, s2, . . . , sU} to learn the
representative normal information, and the u-th position-wise
learnable normality weight is measured as follows:

eu =

exp

(
−su

∥∥∥ ˇgkEa
− pu

∥∥∥2)
∑U
j=1 exp

(
−sj

∥∥∥ ˇgkEa
− pj

∥∥∥2) , (9)

where ˇgkEa
−pu is the distance between the N C-dimensional

normal vectors and U prototype vectors. Following the [51],
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Fig. 5. Schematic comparison between the basic reverse distillation method
and our proposed cascade distillation approach.

we set the number of prototype vectors to 50. After that,
we sum over the U results to obtain e and perform the
channel-wise multiplication ⊗ between aligned feature ˇgkEa

and normality prototype weights e to obtain the unified normal
template ˇfkEa

, which is formulated as:

e←
U∑
u=1

BRM (eu)︸ ︷︷ ︸
⇓

ˇfkEa
= ˇgkEa

⊗ e,

(10)

where BRM(·) contains BN layer with ReLU and the mean
layer. To ensure e remembers the normality, we restrict the
normal similarity between the aligned normal feature ˇgkEa

and
normal template ˇfkEa

in the training stage:

LN =

K∑
k=1

(
∥∥∥ ˇfkEa

− ˇgkEa

∥∥∥2). (11)

2) Cascade distillation: In order to reduce the anomaly
information from the pre-trained teacher network, we trained
our logical student solely from the basic student. As shown in
Fig. 5, unlike traditional reverse distillation where the student
directly mimics the teacher’s features and may potentially
inherit noise or anomalous patterns, our cascade distillation
introduces an intermediate basic student. The basic student
first adapts to normality, and the logical student then distills
knowledge from it. Finally, the logical student learns from the
basic student that has already adapted to normal patterns.

Formally, given the logical student feature fkDl
and basic

student fkDb
, we calculate their feature cosine distance along

the channel axis as logical student distillation loss:

Lcas =

K∑
k=1

(1−
(
fkDb

)T · fkDl∥∥fkDb

∥∥∥∥fkDl

∥∥ ). (12)

D. Semi-online anomaly incremental learning module

To fully leverage the T-S discrepancy maps from BSB, SSB,
and LSB for effective anomaly localization, we design a semi-
online anomaly incremental learning module (SOAIL) that
supports both unsupervised and semi-supervised anomaly de-
tection scenarios. This module is designed for human-machine
interaction and can adapt to increasing amounts of interactive
anomaly data provided by staff. In semi-supervised scenarios,
the anomaly incremental learning module can better fuse
multi-level discrepancy maps to generate the anomaly map.
Specifically, SOAIL consists of multiple MLP layers, Layer-
Norm (LN) layers, and ReLU layers. For a given anomaly
data sample Ia ∈ Iq and the corresponding ground truth mask
Ma, the T-S discrepancy maps DMB , DMS , and DML are
generated by BSB, SSB, and LSB, respectively. The generated
anomaly map of SOAIL is as follows:

Mfuse ← SOAIL(DMB , DMS , DML). (13)

Then, we use the cross-entropy loss to measure the difference
between the generated anomaly map Mfuse and the ground
truth Ma, which can be calculated as LSOAIL:

LSOAIL = −
∑
i

[
M i

a log
(
M i

fuse

)
+
(
1−M i

a

)
log
(
1−M i

fuse

)]
,

(14)

where i indexes each pixel of Mfuse and Ma.

E. Loss function

In the unsupervised scenario, our RIAD method employs
a loss function composed of a three-branch distillation loss,
a coarse defect detection loss, and a normality remembering
loss:

L = LB + LS + Lcas + λ1LM + λ2LN , (15)

where λ1 and λ2 are balance factors. Following the prior
works [19], [51]–[53], we set the λ1 = 0.3 and λ2 = 0.7.
In the semi-supervised scenario, to address the imbalance
issue between normal and anomalous data during training, we
restrict the incremental learning process to the SOAIL module.
Accordingly, the loss function in this stage is defined as:

L = LSOAIL. (16)

IV. EXPERIMENTS

In this section, we conduct a series of experiments to verify
the effectiveness of the proposed method and compare it with
state-of-the-art methods. The datasets involved in these exper-
iments include industrial anomaly detection datasets MVTec
AD [22], BTAD [54], MVTec-3D AD [55], and the tradi-
tional defect detection dataset KolektorSDD2 [56]. In these
unsupervised and semi-supervised experiments, Image-AUC,
Pixel-AUC, and PRO are used as evaluation metrics.
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TABLE I
THE QUANTITATIVE LOCALIZATION RESULTS (PIXEL-AUC / PRO) OF VARIOUS METHODS ON MVTEC AD IN THE UNSUPERVISED SETTINGS

Category
Reconstruction-based Embedding-Based Knowledge distillation-Based

DDAD Transfusion NSA+SSMCTB PatchCore SimpleNet DMAD SFRAD RD4AD DeSTSeg CDO PullPush ATSN DBKD
(ICCV 23) (ECCV 24) (TPAMI 24) (CVPR 22) (CVPR 23) (CVPR 23) (TNNLS 24) (CVPR 22) (CVPR 23) (TII 23) (TCSVT 23) (TIM 24) (TIM 25) Ours

carpet 98.9/95.8 ˜/95.9 95.6/88.2 99.0/96.6 98.2/93.2 99.1/˜ 99.0/94.8 98.9/97.0 96.1/93.6 99.1/96.8 99.5/98.3 99.1/97.3 98.7/97.0 99.3/97.9
grid 99.1/98.4 ˜/98.0 99.2/97.6 98.7/96.0 98.8/94.1 99.2/˜ 98.8/95.1 99.3/97.6 99.1/96.4 98.4/96.0 99.4/97.7 99.0/97.2 98.1/95.1 99.4/97.8

leather 99.5/99.1 ˜/96.2 99.5/94.1 99.3/98.9 99.2/90.5 99.5/˜ 99.4/97.3 99.4/99.1 99.7/99.0 99.2/98.3 99.7/98.7 99.4/99.1 99.4/99.1 99.5/99.1
tile 92.1/95.1 ˜/95.0 99.1/97.8 95.6/87.3 97.0/84.3 96.0/˜ 95.8/80.2 95.6/90.6 98.0/95.5 97.2/90.5 96.8/90.3 95.0/88.8 96.5/92.9 98.1/93.6

wood 94.5/93.0 ˜/94.8 93.5/92.7 95.0/89.4 94.5/86.2 95.5/˜ 95.5/88.8 95.3/90.9 97.7/96.1 95.9/92.9 95.2/93.2 94.8/92.4 95.2/91.5 96.7/93.5
Average 96.8/96.3 ˜/95.9 97.4/94.1 97.5/93.6 97.5/89.7 97.9/˜ 97.7/91.2 97.7/95.0 98.1/96.1 97.9/94.9 98.1/95.6 97.5/95.0 97.5/95.1 98.6/96.4

bottle 97.7/95.0 ˜/97.3 98.4/96.4 98.6/96.2 98.0/91.6 98.9/˜ 98.6/94.8 98.7/96.6 99.2/96.6 99.3/97.2 98.7/95.6 98.8/96.4 99/97.1 99.2/97.2
cable 95.6/89.5 ˜/85.5 97.5/81.5 98.4/92.5 97.6/92.1 98.1/˜ 98.3/96.7 97.4/91.0 97.3/86.4 97.6/94.2 95.7/87.5 98.0/92.7 98/92.6 98.7/93.6

capsule 97.5/91.4 ˜/92.1 97.9/92.7 98.8/95.5 98.9/94.6 98.3/˜ 99.1/95.1 98.7/95.8 99.1/94.2 98.6/93.0 97.8/89.9 98.6/95.7 98.9/96.4 99.0/96.1
hazelnut 97.3/91.1 ˜/97.6 97.9/98.4 98.7/93.8 97.9/91.5 99.1/˜ 98.6/95.7 98.9/95.5 99.6/97.6 99.2/97.4 98.6/96.1 98.9/95.1 99.2/95.5 99.2/97.6

metal nut 96.8/93.0 ˜/94.1 98.3/97.5 98.4/91.4 98.8/89.4 97.7/˜ 98.7/94.5 97.3/92.3 98.6/95.0 98.5/95.7 97.8/93.2 96.0/88.4 98.4/93.5 98.2/94.3
pill 92.5/94.5 ˜/96.2 98.4/90.1 97.4/93.2 98.6/93.6 98.7/˜ 98.5/95.8 98.2/96.4 98.7/95.3 98.9/96.6 98.6/94.9 98.0/96.1 98/96.3 98.7/97.2

screw 99.0/95.6 ˜/97.0 96.4/95.1 99.4/97.9 99.3/91.4 99.6/˜ 99.5/97.3 99.5/98.2 98.5/92.5 99.0/94.3 96.9/85.6 99.1/96.6 99.3/97 99.5/98.2
toothbrush 98.6/95.7 ˜/94.1 95.4/86.7 98.7/91.5 98.5/90.2 99.4/˜ 98.8/90.0 99.1/94.5 99.3/94.0 98.9/90.5 99.1/91.8 98.9/93.2 99.2/94.4 99.4/94.2
transistor 93.1/90.1 ˜/83.9 88.3/68.4 96.3/83.7 97.6/68.5 95.4/˜ 96.6/91.8 92.5/78.0 89.1/85.7 95.3/92.6 99.2/97.6 94.5/83.9 96.4/79.5 95.1/89.7

zipper 98.3/93.6 ˜/97.2 94.7/95.8 98.8/97.1 98.9/92.5 98.3/˜ 98.8/95.6 98.2/95.4 99.1/97.4 98.2/94.3 97.9/93.0 98.3/95.0 98.3/96.4 98.5/95.5
Average 96.6/93.0 ˜/93.5 96.3/90.3 98.4/93.3 98.4/89.5 98.4/˜ 98.6/94.7 97.9/93.4 97.5/93.5 98.4/94.6 98.0/92.5 97.9/93.3 98.5/93.9 98.5/95.4

Total Avg. 96.7/94.1 ˜/94.3 96.7/91.5 98.1/93.4 98.1/89.6 98.2/˜ 98.3/93.6 97.8/93.9 97.9/94.4 98.2/94.7 98.1/93.6 97.8/93.9 98.2/94.2 98.6/95.7

Fig. 6. Visualizations of our proposed method and several comparative methods on the MVTec AD, MVTec-3D AD and BTAD benchmarks.

A. Experiment settings

1) Dataset: MVTec AD [22] is a widely used dataset for
industrial anomaly detection. It contains a total of 5354 high-
resolution images, comprising 15 sub-datasets that can be
further divided into 10 object sub-categories and 5 texture sub-
categories. Each sub-category includes a training set with only
normal samples and a test set with various types of anomalies.
BTAD [54] contains 2540 images and is a publicly available
dataset for industrial image anomaly detection. MVTec-3D
AD [55] includes 10 sub-categories similar to those in the
MVTec AD dataset, with the addition of over 4000 3D point
cloud data to capture details and defects on three-dimensional
surfaces. However, in this work, only RGB images are used
for anomaly detection. KolektorSDD2 [56] contains approx-
imately 2000 normal images for the training set and about
1000 test images for defect detection on a single type of
industrial surface. Compared to the aforementioned datasets,
KolektorSDD2 provides some abnormal images that can be
used both for unsupervised and semi-supervised anomaly

detection scenarios.
2) Evaluation metric: Image-AUC and Pixel-AUC are

used to evaluate the performance of a classifier in detecting
and localizing anomalies at the image and pixel level. These
metrics are calculated by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold
settings and then computing the area under the “Receiver
Operating Characteristic” (AUROC) curve. The formulas of
TPR and FPR are expressed as follows:

TPR =
TP

TP + FN
, (17)

FPR =
FP

FP + TN
, (18)

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respectively.
PRO is also employed to evaluate the performance in localized
anomalies at the pixel level. It measures the normalized area
under the “Per-Region Overlap” curve (AUPRO) between
detected anomaly regions and ground truth anomaly regions.
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TABLE II
IMAGE-LEVEL ANOMALY DETECTION AUC(%) ON MVTEC AD. RESULTS ARE AVERAGED OVER ALL CATEGORIES

PatchCore RD4AD OCR-GAN CDO DCAE DeSTSeg PullPush NSA+SSMCTB Transfusion ATSN SFRAD DBKD
(CVPR 22) (CVPR 22) (TIP 23) (TII 23) (TII 24) (CVPR 23) (TCSVT 23) (TPAMI 24) (ECCV 24) (TIM 24) (TNNLS 24) (TIM 25) Ours

99.1 98.5 98.3 98.2 99.2 98.6 94.8 97.7 99.2 98.4 99.1 98.1 99.6

TABLE III
THE QUANTITATIVE LOCALIZATION RESULTS (PIXEL-AUROC /
PRO) ON THE MVTEC-3D AD DATASET WITH PURE RGB INPUTS

Category Shape-Guided M3DM CDO MMRD
(ICML 23) (CVPR 23) (TII 23) (AAAI 24) Ours

bagel 98.7/94.6 99.1/95.2 99.3/97.5 ˜/97.0 98.9/96.5
cable gland 99.1/97.2 99.4/97.2 99.2/98.3 ˜/98.3 99.5/99.2

carrot 99.1/96.0 99.4/97.3 99.4/98.1 ˜/98.2 99.1/97.3
cookie 97.6/91.4 97.1/89.1 98.1/86.3 ˜/92.4 97.8/92.6
dowel 98.5/95.8 99.7/93.2 98.8/97.6 ˜/97.6 99.0/98.1
foam 91.2/77.6 95.6/84.3 89.1/70.5 ˜/87.5 99.3/96.7
peach 99.3/93.7 99.4/97.0 99.6/98.6 ˜/98.1 99.1/97.1
potato 99.1/94.9 99.0/95.6 99.1/96.1 ˜/97.5 99.2/98.1
rope 99.3/95.6 99.3/96.8 99.6/97.1 ˜/98.4 99.5/96.7
tire 99.2/95.7 99.5/96.6 99.4/97.4 ˜/97.3 99.3/97.8

Total Avg. 98.1/93.3 98.8/94.2 98.2/93.75 ˜/96.2 99.1/97.0

Consistent with [22], PRO is calculated with an average per-
pixel FPR threshold of 0.3.

3) Two supervision scenarios:
• The unsupervised scenario. In traditional industrial

anomaly detection, the unsupervised model is typically
optimized with the training set containing only normal
samples and the test set containing both normal samples
and long-tailed distributed anomaly samples. In the local
anomaly transfer module of this work, synthetic data is
used solely to train the model for foreground anomaly
prediction and does not participate in the anomaly detec-
tion model training process.

• The semi-supervised scenario. In practical industrial
applications, to improve anomaly detection performance,
few-shot abnormal data is included in the training set to
aid in model performance. In this work, we primarily
utilize a small number of anomaly samples in the semi-
online anomaly incremental learning module to integrate
multi-level discrepancy maps.

4) Implementation details: All images were resized to (256,
256) and normalized using the mean and standard deviation
derived from the ImageNet dataset. The wide-resnet50 was
used for the teacher network. To ensure consistency of the
results, we re-evaluated the methods involved in the experi-
ments and averaged the results from five runs to obtain the
final results. All experiments were conducted on a machine
equipped with an Intel i5-13600KF CPU, 32G DDR4 RAM,
and an NVIDIA Tesla P100-16GB GPU.

B. Quantitative results

1) Unsupervised anomaly detection and localization: In
this section, we compared various existing methods for unsu-
pervised anomaly detection and localization to validate the ef-
fectiveness of our proposed method. Firstly, we conducted ex-
periments on the MVTec AD dataset, with the results presented
in Table I for anomaly localization and Table II for anomaly
detection. In Table I, we compared three major categories

TABLE IV
THE IMAGE/PIXEL-LEVEL AUROC RESULTS ON THE BTAD

DATASET

Category PatchCore RD4AD RD++ RealNet
(CVPR 22) (CVPR 22) (CVPR 23) (CVPR 24) Ours

01 88.7/95.0 96.3/96.6 96.8/96.2 100/96.8 98.3/97.9
02 76.0/94.9 86.6/96.0 88.1/96.4 86.7/96.2 91.2/97.1
03 99.8/99.2 99.8/99.5 99.6/99.7 99.6/99.7 100/99.7

Average 88.2/96.4 94.2/97.4 94.8/97.4 95.4/97.6 96.5/98.2

of anomaly detection methods: Reconstruction-Based meth-
ods, Embedding-Based methods, and Knowledge distillation-
Based methods. The Reconstruction-Based methods include
DDAD [12], TransFusion [13], and NSA+SSMCTB [9]; the
Embedding-Based methods include PatchCore [6], SimpleNet
[7], DMAD [8], and SFRAD [57]; the KD-Based methods
include RD4AD [15], DeSTSeg [24], CDO [16], Pull&Push
[25], ATSN [27], and DBKD [58]. From the Pixel-AUC and
PRO results in Table I, it can be seen that our approach
consistently demonstrates stable and superior performance
across various categories. As shown in the results, our method
exhibits optimal or near-optimal performance across 12 out
of 15 categories on the MVTec AD dataset. This represents
80% of the total categories, underscoring the robustness and
generalizability of our method. For example, Our method
shows significant improvements in the PRO for the “tile”
and “transistor” categories, with increases of +2.7 and +10.2,
respectively, in contrast to the latest method DBKD. compared
to the baseline model RD4AD, our method exhibits improve-
ments of +1.8 in PRO and +0.8 in Pixel-AUC. In Table II, we
presented the Image-Level Anomaly Detection AUC results
on the MVTec AD dataset. It can be seen that our method
achieved an average AUC of 99.6, which is +1.1 percentage
points higher than the baseline model RD4AD’s 98.5, and
outperformed the state-of-the-art method TransFusion by +0.4
points.

To achieve a more comprehensive comparison, we also
evaluate our method on the MVTec-3D AD and BTAD
datasets. As shown in Table III, our method demonstrated out-
standing performance across several categories. For instance,
in the foam category, our method achieved Pixel-AUROC
and PRO scores of 99.3 and 96.7, respectively, significantly
outperforming other methods. Notably, our method exhibited
an improvement of +1 points in Pixel-AUROC compared to
Shape-Guided [59] and an improvement of +0.8 points in
PRO compared to the state-of-the-art method MMRD [51].
Additionally, comparative experiments on the BTAD dataset
illustrate that our method consistently outperforms existing
advanced methods such as RD++ [26] and RealNet [60]. As
we can see in Table IV, our method achieved an Image-
AUROC of 91.2 in category 02, significantly higher than the
RealNet method, which scored 86.7.
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TABLE V
COMPUTATIONAL COMPLEXITY (TRAINING MEMORY AND INFERENCE TIME) AND I-AUC/P-AUC/PRO RESULTS FOR DIFFERENT MODEL VARIANTS IN

THE ABLATION STUDY ON THE MVTEC AD BENCHMARK.

Model
variants

SSB LSB Fuse Training
Memory(MB)

Inference
Time(ms)RTV SSE ARC LNP Lcas SOAIL Performance

(A) × × × × × × 100.2 14.2 98.5/96.9/93.2
(B) X × × × × × 103.5 (+3.3) 16.7 (+2.5) 98.9/97.4/93.3
(C) X X × × × × 207.2 (+103.7) 37.4 (+20.7) 99.0/97.9/94.7
(D) X X X × × × 213.5 (+6.3) 37.9 (+0.5) 99.1/98.0/94.5
(E) X X X X × × 226.5 (+13.0) 40.7 (+2.8) 99.3/98.2/95.2
(F) X X X X X × 327.1 (+100.6) 55.1 (+14.4) 99.6/98.6/95.3
(G) X X X X X X 342.7 (+15.6) 57.3 (+2.2) 99.6/98.6/95.7

TABLE VI
COMPLEXITY COMPARISON BETWEEN THE PROPOSED METHOD AND

CURRENT SOTA ALGORITHMS ON MVTEC AD. THE METHOD WITH THE
SYMBOL * STANDS FOR THE RESULT OBTAINED BY RE-IMPLEMENTING

THE ALGORITHM FRAMEWORKS FOR FASTER EXECUTION

Method Training Inferece I-AUC/P-AUC/PROMemory(MB) Time(ms)
PatchCore (CVPR 22) 1437.4 224.7 99.1/98.1/93.4

CDO (TII 23) 419.2 80.6 96.8/98.2/94.3
TransFusion (ECCV 24) 1144.4 342.8 99.2/98.1/94.4

RD4AD (CVPR 22) 355.4 26.9 98.5/97.8/93.9
RD4AD* (CVPR 22) 100.2 14.2 98.5/96.9/93.2

Ours 342.7 57.3 99.6/98.6/95.7

Overall, our method showcased state-of-the-art performance
in unsupervised scenarios across three publicly benchmark
datasets, particularly exhibiting significant improvements in
both Pixel-AUROC and PRO metrics.

2) Computational complexity: We analyze the computa-
tional complexity of our RIAD method by outlining the time
and space complexity of its key modules (SSB, LSB, and
SOAIL) in Table V, and comparing its efficiency with state-
of-the-art methods in Table VI. As shown in Table V, the SSB
module enhances structured features with a space complexity
of O(L × C2 × K2 + C × H ×W ) and a time complexity
of O(L × C2 × H × W × K2), where L is the number
of layers, C the number of channels, H × W the spatial
resolution, and K the kernel size. Integrating the SSE module
increases training memory by 107 MB and inference time by
23.2 ms, resulting in a pixel-level AUROC improvement from
96.9 to 97.4. The LSB module incurs a space complexity of
O(N × C + U × C + N × U) and a time complexity of
O(N × U × C), where N is the number of spatial positions,
U the number of prototypes, and C the feature dimension.
Adding the LSB module increases training memory by 119.9
MB and inference time by 17.7 ms, significantly improving
the pixel-level AUROC score from 94.7 to 95.3. Finally,
integrating the SOAIL module leads to a modest increase
in training memory (15.6 MB) and inference time (2.2 ms),
yet contributes to an additional gain in the pixel-level PRO
score from 95.3 to 95.7. As shown in Table VI, our proposed
RIAD method achieves a PRO score of 95.7, outperforming
RD4AD by 1.8% and RD4AD* by 2.5%. In terms of in-
ference speed, RIAD achieves 57.3 ms, which is 3.9 times
faster than PatchCore and 6 times faster than TransFusion,
making it highly suitable for real-time industrial deployment.
Although RIAD introduces a slightly higher training memory

Fig. 7. Comparison of success and failure cases in detecting tiny defects
across different methods.

footprint (342.7 MB) compared to RD4AD* (100.2 MB), it
maintains a favorable balance between accuracy and efficiency,
significantly reducing inference latency while delivering state-
of-the-art detection performance.

C. Qualitative comparisons

To better illustrate the advantages of our method, Fig. 6
shows the anomaly localization results of various methods
on the MVTec AD, MVTec-3D AD, and BTAD datasets. 1)
Our proposed method consistently achieves stable high-level
segmentation across multiple benchmarks and categories. In
contrast, PatchCore fails in anomaly localization on MVTec-
3D AD and BTAD. 2) Due to the feature representation
capability of the structural student to transform the style of
local anomalies, our method exhibits greater differences in
anomaly regions, leading to a more complete representation
of overall anomaly structures. For example, in the bottle, tile,
and zipper categories of MVTec AD and the tire category
of MVTec-3D AD, where anomalies are relatively hidden
and dispersed, RD4AD and RD++ classify some anomalous
pixels as false positives during localization. This is a critical
error in high-precision segmentation tasks. In contrast, our
method can more accurately localize the entire defective part.
3) Unsupervised anomaly detection methods based on RD4AD
generally fail to identify logical anomaly issues. For instance,
ASTN and RD++ cannot locate missing parts of anomalies in
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Fig. 8. Visualization of restored features from different variants of the LSB module on defects of varying sizes. From left to right: normal images, anomaly
images, restored features, and anomaly maps from RD4AD, our logical student branch (LSB) with only ARC, with ARC and LNP, with ARC, LNP, and
Lcas, followed by the ground truth anomaly masks. The restored feature maps illustrate how different LSB configurations progressively enhance their ability
to reconstruct normal patterns, leading to more precise anomaly localization. The integration of ARC, LNP, and Lcas enables a more effective suppression of
normal features, thereby improving the detection of defects across different scales.

the transistor category of MVTec AD due to the “normality
forgetting” problem. Conversely, our logical student can re-
member normality to some extent, supporting the effectiveness
of our method. In conclusion, These qualitative comparisons,
supported by the visual results in Fig. 6, demonstrate the
robustness and superiority of our proposed method in anomaly
detection.

D. Ablation study

In this section, extensive experiments were conducted to
validate the various key components of the RIAD method.
These components were combined into different model vari-
ants to test their performance on MTVec AD. Table V presents
the quantitative results of each model’s image AUROC, pixel
AUROC, and PRO. Among them, model variant (A) is the
baseline RD4AD* model.

1) SSB: The Structural Student Branch (SSB) primarily
consists of RTV and SSE, where RTV transforms the global
image style, and SSE preserves local anomaly information for
anomaly style estimation. This combination enhances the T-
S model discrepancy within anomaly regions, allowing for
precise localization of the global anomaly structure. It is
crucial to emphasize that SSE is essential among these two
modules. As shown in Table V, the model (B) using only
RTV performs worse than the baseline. This is because RTV,
while transforming the global image style, partially diminishes
the anomaly structure, resulting in a reduced T-S discrepancy
under the global style transformation by RTV. In Table V,
the quantitative results for model (C) reflect the findings of
the qualitative experiments. Model (C) not only compensates
for the decline observed in model (B) but also shows an
improvement over the baseline, with increases of 1% in pixel-
AUC and 1.5% in PRO. Additionally, it achieves a 0.5%
improvement in image-AUC.

While the Structural Student Branch (SSB) is effective, it
may negatively impact detection performance if small noise is
mistakenly identified as an anomaly, as shown in the Fig. 7.
This is because the SSB module focuses on capturing localized

structural defects, which can sometimes overlook the overall
normality. Therefore, it is necessary to incorporate the Logical
Student Branch (LSB) and a fusion module to extract global
features, thereby improving overall detection accuracy.

2) LSB: The purpose of the Logical Student Branch (LSB)
is to maximize the memorization of normality without increas-
ing memory cost. We employ ARC, LNP, and Lcas to prevent
normality forgetting. From Table V, it can be observed that
the performance of the model (D), which uses only ARC,
is not outstanding. This is because the object angles in the
MVTec AD dataset are mostly fixed. For instance, as shown
in the third row of Fig. 8 for the capsule category, the restored
feature after using ARC is similar to the feature from RD4AD.
Subsequently, LNP was introduced to learn the normality
template. However, it backpropagates the knowledge from the
pre-trained model, giving the logical student strong anomaly
reconstruction capabilities, which resulted in no improvement
in the quantitative results of model (E).

To address this, we propose the cascade distillation loss
Lcas that removes the knowledge of the pre-trained model
and uses only the basic student for cascade distillation. This
improvement significantly enhances the normality memoriza-
tion capability of the LSB, leading model (F) to achieve
the highest image-AUC of 99.6, pixel-AUC of 98.6, and a
0.8% improvement in PRO compared to SSB. As shown in
Fig. 8, the reconstructed features after adding Lcas completely
restore the normal information, and the anomaly maps achieve
comprehensive and efficient logical anomaly localization.

3) SOAIL: Semi-online learning strategy is employed to
fuse the discrepancy maps from the basic student branch,
structural student branch, and logical student branch. The
purpose of this module is to enhance anomaly detection by
integrating information from different aspects of the model.
Model variant (G) demonstrates a great improvement in per-
formance compared to model (F), specifically achieving a
0.2% increase in PRO. This enhancement underscores the
effectiveness of the SOAIL module in combining the strengths
of the three branches to achieve more accurate and robust
anomaly localization and detection. Additionally, we introduce
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Fig. 9. The statistical distribution of defect sizes in the MVTec-2D dataset.
(a) A detailed breakdown of small defects from (b), further categorized into
tiny defects and regular small defects based on defect size. (b) The overall
distribution of defect sizes, classified into small, middle, and large defects.

Fig. 10. Quantitative comparison of different methods across all defect,
regular small defect, and tiny defect data sets. (a) Image-level performance
in terms of AU-ROC%. (b) Pixel-level performance in terms of AU-PRO%.
The best and second-best performances are highlighted with star and triangle
markers, respectively.

the significant potential of SOAIL in semi-supervised anomaly
detection in the subsequent sections.

E. Performance Across Diverse Defects and Settings

In this section, we discuss the performance and robustness
of our proposed RIAD method across different defect sizes
and various industrial environment settings.

1) Statistics of defect size: As shown in Fig. 9(a) and
(b), we calculate the defect size statistics of the MVTec AD.
Formally, we first define the defect size S as the ratio of the
defect area D to the total image area I .

S =
D

I
(19)

As shown in Fig. 9(b), we classify small defects as those
with S < 0.02, middle defects as those within 0.02 ≤ S ≤
0.06, and large defects as those with S > 0.06. To further
analyze the distribution of small defects, we present a more
fine-grained breakdown in Fig. 9(a), where tiny defects are
defined as those with S < 0.005, and regular small defects
as those with 0.005 ≤ S < 0.02. According to the statistics,
small defects, middle defects, and large defects account for
57.1%, 27.3%, and 15.6%, respectively. Notably, among the
small defects, tiny defects make up 25.2%, while regular small
defects constitute 31.9%.

Fig. 11. The statistical distribution of common and special defect types in
the MVTec-2D dataset. The x-axis represents different defect categories, while
the y-axis indicates the number of images for each defect type.

Fig. 12. Multi-view image acquisition schematic diagram.

2) Performance across defect sizes focusing on small de-
fects: Based on the defined defect size subsets, we conducted
further evaluations on datasets containing all defects, regular
small defects, and tiny defects. As shown in Fig. 10, image-
level performance generally declines with smaller defect sizes
due to the removal of easily detectable large defects. However,
pixel-level results reveal that regular small defects are often
easier to localize than large or tiny ones. Despite the overall
performance drop with decreasing defect size, our method con-
sistently outperforms others, demonstrating strong robustness
across scales.

The LSB module enhances small defect detection by
modeling global normality, while the LNP aids fine-grained
reconstruction via pattern memory. Furthermore, integrating
SSB and SOAIL modules boosts both image- and pixel-level
performance, validating the effectiveness of our multi-branch
design for multi-scale anomaly detection.

3) Performance across diverse defect types and industrial
conditions: To provide a more comprehensive overview of
the variety of defects our method can handle, we conducted
a statistical analysis of the defect categories in the MVTec
AD dataset and visualized the results as a histogram (Fig.
11). This visualization distinguishes between common defect
types, such as color, scratch, crack, cut, and contamination,
which frequently occur across various industrial scenarios, and
special defect types, such as flip, squeeze, broken, oil, and
fold, which are more specific to certain industrial domains.
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Fig. 13. Experimental validation in a real-world industrial environment under unsupervised and 10-shot semi-supervised scenarios. (a) A multi-view automatic
image acquisition system installed on the logistics production line. (b) Image preprocessing workflow and the distribution of the plastic crate dataset. (c)-(d)
Comparison of qualitative and quantitative results of different methods, with underlined approaches indicating those evaluated in the semi-supervised setting.

Fig. 14. Multi-view image capturing and processing system Flowchart.

TABLE VII
IMAGE-LEVEL / PIXEL-LEVEL AUROC RESULTS UNDER UNSUPERVISED

AND SEMI-SUPERVISED (TEN ABNORMAL SAMPLES) SCENARIOS ON
KOLEKTORSDD2 AND OUR REAL-WORLD BENCHMARKS

Category
Unsupervised scenario Semi-supervised scenario

ATSN RD4AD CDO PRN
(TIM 24) (CVPR 22) (TII 23) Ours (CVPR 23) Ours*

Camera1 74.5/94.3 90.7/96.8 89.1/96.3 91.5/97.1 90.4/97.2 91.8/97.5
Camera2 76.8/95.1 87.7/96.0 86.2/97.1 88.1/97.7 87.6/96.9 88.5/97.9
Camera3 76.2/94.8 86.4/95.3 88.9/96.5 87.7/95.9 91.2/97.0 88.4/96.7
Average 75.8/94.7 88.3/96.0 88.1/96.6 89.1/96.9 89.7/97.0 89.6/97.4

KolektorSDD2 94.6/97.1 96.0/97.6 95.7/98.0 96.8/98.2 96.4/97.6 97.2/98.9

The prevalence of common defects demonstrates the strong
generalization capability of our method across diverse real-
world applications, while the inclusion of special defect types
further highlights its adaptability to domain-specific industrial
tasks. Fig. 6 further demonstrates anomaly localization on
bottle, cable, and tire classes under varying lighting, reflecting
typical industrial settings. These results confirm the robustness
and adaptability of our method across different environments
and applications.

F. Semi-supervised real world application

In this section, we present a real-world application of
industrial plastic crate anomaly detection. First, we introduce
a multi-view image acquisition and processing system. Then,
we analyze the characteristics of the collected dataset. Finally,
we evaluate the performance of our proposed RIAD method

under both unsupervised and semi-supervised settings within
this industrial environment.

1) Multi-view image acquisition setup: As illustrated in
Fig. 12, the object (plastic crate) is placed on a conveyor
belt that moves in a fixed direction. Three cameras (Camera1,
Camera2, and Camera3) are strategically positioned around the
object to capture comprehensive views from different angles.
This configuration ensures full coverage of the crate’s surfaces,
allowing the system to detect anomalies that may not be visible
from a single viewpoint.

2) Image capturing, processing, and annotation: Based on
the schematic in Fig.12, we built a real-world industrial image
acquisition system (Fig.13) and conducted data collection and
annotation following the workflow in Fig.14. Specifically,
objects are first detected by infrared sensors as they move
along the conveyor belt. Upon detection, the belt pauses, and
multi-view cameras capture images from different angles. As
shown in the upper part of Fig. 13(b), the raw images cap-
tured from the production line contain cluttered backgrounds,
including conveyor belt edges and other distracting elements.
To mitigate the interference caused by such background noise,
we preprocess the collected data using foreground detection
[33] and salient object detection [38] methods. The resulting
background-removed images are subsequently manually anno-
tated and utilized for anomaly detection.

3) Collected dataset analysis: Following the steps de-
scribed above, we collected a Multi-view Automated Plastic
Crate Dataset (MVAPCD), which includes data from three
different camera perspectives. Each view contains approxi-
mately 210 normal images for training, along with 60 nor-
mal and 35 anomalous images for testing. Compared to
existing datasets such as MVTec AD, MVTec-3D AD, and
BTAD, which primarily consist of small objects like capsules,
screws, and carrots, the challenge posed by our plastic crate
dataset lies in the relatively large product size (approximately
25cm*40cm*20cm) and the subtle nature of defect infor-
mation, which results in a high rate of missed anomalies.
Moreover, performance varies across views. As shown in
Fig. 13(b), side views (Camera2 and Camera3) are more
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challenging than the top view (Camera1) due to higher visual
variability, structural complexity, and interference from printed
labels. Side-view defects often appear along narrow edges or
seams, making them harder to detect. Additionally, in practice,
the conveyor’s motion causes crates to shift forward after
stopping, making objects appear larger in Camera2’s view than
in Camera3’s, resulting in better performance for Camera2.

4) Performance analysis on real world application: Fig. 13
(c) qualitatively presents the anomaly localization results under
unsupervised and semi-supervised scenarios. The localization
results of RD4AD [15] and CDO [16] on the Plastic Crate
Dataset and KolektorSDD2 dataset reveal that the detection
task on the real dataset in this paper is more challenging.
In comparison, our proposed RIAD method demonstrates
the ability to localize various anomalies in the unsupervised
scenario. In the semi-supervised scenario, we simulate human-
machine interaction using 10 abnormal samples, where the
PRN [19] method shows significantly better performance than
unsupervised methods; however, it performs poorly on the
Camera1 and KolektorSDD2 datasets. Owing to the SOAIL
method proposed in this paper, the interaction with labeled
abnormal samples enables more effective incremental learning,
enhancing the model’s fusion mechanism of S-T discrepancy
maps and achieving more accurate localization results. Table
VII and Fig. 13 (d) quantitatively illustrate the anomaly
detection results of various methods under unsupervised and
semi-supervised scenarios, demonstrating the efficiency of the
proposed method in anomaly detection and localization across
multiple datasets in both scenarios.

G. Limitation and future work

Despite the strong performance of the proposed RIAD
method, certain limitations remain. In particular, the Logical
Student Branch (LSB) and Structural Student Brankch (SSB)
struggle to restore and detect extremely large or tiny defects
due to two key factors. First, the ResNet backbone used
for lightweight knowledge distillation primarily captures local
features, limiting its ability to represent large-scale anomalies.
Second, the low input resolution (256, 256) leads to the loss of
fine-grained details, making tiny defects difficult to detect—as
illustrated by the failure case in Fig. 7 and the camera3
example in Fig. 13 (c), where anomalies closely resemble
the background. To address these challenges, we consider to
integrate global-aware feature extractors such as Vision Trans-
formers [61], Diffusion models [62], and few-shot large vision-
language models [63] (e.g., CLIP) to better capture long-
range dependencies, improve semantic understanding, and
enhance reconstruction quality of normal patterns. In parallel,
we plan to explore high-resolution detection strategies [64],
including super-resolution, multi-scale analysis, and adaptive
input resolutions, to boost sensitivity to subtle anomalies and
further improve the method’s practical applicability.

V. CONCLUSION

In conclusion, this paper has introduced the RIAD method,
an efficient Knowledge distillation-based model applicable to
unsupervised and semi-supervised human-machine interactive

anomaly detection scenarios. By introducing style information
for the first time in the knowledge distillation-based indus-
trial anomaly detection field, RIAD significantly enhances
the balance of generalization and robustness against out-of-
distribution data via the bidirectional fusion of style infor-
mation and content information. Extensive experiments on
four widely used benchmark datasets validate the effectiveness
of the proposed method and its components, showing strong
performance across multi-size defects and various industrial
conditions. At the same time, a real-world industrial applica-
tion further validates its practical effectiveness and industrial
applicability. Moving forward, we plan to further explore its
applications in diverse industrial environments.
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