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Improving RGB-D Salient Object Detection via
Modality-Aware Decoder

Mengke Song, Wenfeng Song, Guowei Yang , and Chenglizhao Chen , Member, IEEE

Abstract— Most existing RGB-D salient object detection (SOD)1

methods are primarily focusing on cross-modal and cross-level2

saliency fusion, which has been proved to be efficient and3

effective. However, these methods still have a critical limitation,4

i.e., their fusion patterns – typically the combination of selective5

characteristics and its variations, are too highly dependent on6

the network’s non-linear adaptability. In such methods, the bal-7

ances between RGB and D (Depth) are formulated individually8

considering the intermediate feature slices, but the relation at9

the modality level may not be learned properly. The optimal10

RGB-D combinations differ depending on the RGB-D scenarios,11

and the exact complementary status is frequently determined by12

multiple modality-level factors, such as D quality, the complexity13

of the RGB scene, and degree of harmony between them.14

Therefore, given the existing approaches, it may be difficult for15

them to achieve further performance breakthroughs, as their16

methodologies belong to some methods that are somewhat less17

modality sensitive. To conquer this problem, this paper presents18

the Modality-aware Decoder (MaD). The critical technical inno-19

vations include a series of feature embedding, modality reasoning,20

and feature back-projecting and collecting strategies, all of which21

upgrade the widely-used multi-scale and multi-level decoding22

process to be modality-aware. Our MaD achieves competitive23

performance over other state-of-the-art (SOTA) models without24

using any fancy tricks in the decoder’s design. Codes and25

results will be publicly available at https://github.com/26

MengkeSong/MaD.27

Index Terms— RGB-D salient object detection, modality-aware28

fusion, deep learning.29

I. INTRODUCTION AND MOTIVATION30

SALIENT Object Detection (SOD) aims at well-31

segmenting the most eye-attracting objects in a given32

image scene, and this topic has been extensively studied for33
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Fig. 1. Pictorial demonstrations of the existing RGB-D fusion schemes.
We use ✓ and ✗ to denote advantages and disadvantages.

over 20 years. Thanks to the rapid development of deep 34

learning technology, it has been widely used in various com- 35

puter vision-related downstream applications, such as image 36

retrieval [1], [2], [3], [4], image translation [5], [6], object/face 37

detection [7], [8], [9], [10], [11], segmentation [12], [13], 38

compression [14], [15], and even video tracking [16], [17]. 39

Albeit making significant progress, we have observed that new 40

performance improvement achieved by the recent works [18], 41

[19], [20], [21], [22] shrinks significantly, indicating the solely 42

RGB image-based SODs have reached a performance bottle- 43

neck. 44

Different from the single RGB SODs [23], [24], [25], [26], 45

[27], [28], [29], [30], [31], [32], [33], RGB-D SODs [34], 46

[35], [36], [37], [38] have become a scorching research topic 47

recently since depth-sensing cameras are more accessible than 48

ever before, e.g., even for a smart mobile phone, depth- 49

sensing cameras have been widely equipped [39]. It is both an 50

opportunity and a challenge since the additional D information 51

enhances the potential to achieve a further SOD performance 52

improvement, yet designing an appropriate fusion logic is also 53

not an easy task. 54

In general, the fusion methods adopted by state-of-the-art 55

(SOTA) RGB-D SODs can be categorized into three groups: 56

1) early fusion [41], [42], 2) late fusion [43], [44], and 57

3) mid fusion [45], [46], [47], [48], [49], [50], as illus- 58

trated in Fig. 1. Though early fusion and late fusion have 59

their advantages, they usually perform poorly due to the 60

absence of feature interaction. Thus the current mainstream 61

SOTA models have widely adopted the mid-fusion. Nev- 62

ertheless, such a widely-used fusion scheme has a critical 63

limitation, i.e., the fusion process is ‘modality-unaware1’ or 64

1Here we use the term ‘modality-unaware’ to highlight that the modality
relationship was inappropriately learned by the existing SOTA works. We are
also fully aware that the current methods can somehow learn the modality
relationship, but not as appropriate as our approach.
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Fig. 2. Real instances to illustrate the advantage of our modality-aware fusion against the widely-used modality-unaware mid fusion. In view of the
conventional mid fusion (DMRA [40]), the RGB-D combination rules learned in common senses (a) might not be suitable for uncommon scenes (b), and
such a problem can be solved only if the modality relationship has been considered in advance, e.g., (c).

‘modality-near-aware’. An optimal complementary fusion sta-65

tus between RGB and D is often determined by multiple66

modality-related factors, e.g., D quality, the complexity of the67

RGB scene, and harmony degree between RGB and D; all such68

factors are objective, and they might not be perceived by the69

current SOTA models, because their fusion logics simply focus70

on learning non-linear mapping over intermediate features71

derived by off-the-shelf encoders (e.g., ResNet [51]).72

To facilitate a better clarification, Fig. 2 provides some73

pictorial instances. From the perspective of mid-fusion, the74

problem is that those RGB-D combination rules are learned75

from ordinary RGB senses (a). And the majority of train-76

ing instances in real works usually adapt poorly in facing77

uncommon scenes (RGB saliency conflicts with D saliency),78

e.g., (b). The main reasons are twofold: 1) those uncommon79

scenes are usually the minorities, leading to biased training;80

2) more importantly, such mid fusion often formulates its81

RGB-D combination rules by considering intermediate feature82

slices individually — a very local methodology, leading to the83

training task to be very complex and, eventually, making the84

biased learning situation worse.85

As shown in the first two rows of Fig 3, a typical case whose86

depth shall play a dominant role, the modality relationship in87

such case cannot be well learned by the existing methods. Thus88

the salient object has been detected inaccurately. Also, when89

the RGB takes hold in the detection shown in the last two90

rows, the existing SOTA methods still perform not very well,91

which are inferior to our modality-aware method in such cases.92

The main reason is that these methods do not appropriately93

learn the complemental relationship between RGB and depth;94

they merely integrate the two-modality feature slices in a95

local manner. The harmony degree between RGB and depth96

determines the degree of complementarity, and the harmony97

degree is what we call ‘modality-aware’.98

In contrast to the existing works, the major highlight of our99

approach, a novel Modality-aware Decoder (MaD) demon-100

strated in Fig. 2 (c), is to reason between different modalities.101

The learned modality relationships will later be used to guide102

the subsequent dense feature collection, making the decoding103

process focus more on the modality relationship and thus104

perform well in those uncommon scenes.105

More theoretically speaking, our approach divides all poten-106

tial RGB-D combinations into coarse-granularity ‘boxes/cases’107

in advance (Fig. 2-c), and thus the subsequent fine-granularity108

Fig. 3. Visualized comparison among our method and some modality-
unaware methods (UCNet [52], D3Net [53] and DMRA [40]). The first two
lines represent complex RGB scene with clear depth, while the last two lines
denote clear RGB scene with low-quality depth.

slice-level combinations can be learned correctly. The pro- 109

posed MaD mainly consists of two parts, i.e., 1) a feasi- 110

ble way to decouple and represent RGB-D images into a 111

modality-related feature space, which solids the basis of our 112

MaD, and will be detailed in Sec. III-B, and 2) a series of 113

feature embedding and back-projecting strategies are devised 114

to convert the SOTA decoding process to be modality-aware, 115

and this part will be detailed in the rest of Sec. III. 116

The key contributions of this paper can be summarized in 117

the following three aspects: 118

• As one of the first attempts, this paper has raised attention 119

regarding the importance of modality relationships in 120

performing RGB-D SOD. In addition, some in-depth 121

discussions and explanations of this issue have been 122

conducted. 123

• This paper has devised a feasible solution to per- 124

form modality-level reasoning to achieve modality-aware 125

RGB-D fusion. A series of functional modules are pre- 126

sented to facilitate the use of modality relationships to 127

guide multi-scale/level feature collection. 128

• We have conducted extensive experiments to verify the 129

effectiveness and superiority of our approach (i.e., MaD). 130

Both codes and results are now publicly available, poten- 131

tially benefiting our research community in the near 132

future. 133
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II. RELATED WORK134

A. RGB-D Salient Object Detection135

Traditional methods mainly rely on hand-craft features [54],136

[55], [56], [57], [58], using a large amount of saliency prior137

information for image saliency detection, such as contrast138

prior, image background prior, target prior, and so on. Zhu139

and Li [54] proposed a multi-layer back-propagation saliency140

detection algorithm based on depth mining to exploit depth141

cues from three different layers of images. Zhu et al. [55] used142

a center-dark channel prior by generating a center-dark channel143

map based on a center saliency prior and a dark channel prior.144

They then fused the initial saliency map with the center-dark145

channel map to generate the final saliency map. This algorithm146

is straightforward and can also be applied to small object147

detection. However, these methods seem simple but disregard148

the differences between the RGB and depth modalities and149

thus might not achieve reliable results.150

As deep learning comes into view, many CNNs-based meth-151

ods [50], [59], [60], [61], [62], [63], [64], [65], [66], [67]152

dominate this field. Among them, fusion-based methods [41],153

[42], [43], [44], [53], [68], [69], [70], [71], [72], [73] have154

devoted significantly to RGB-D saliency detection and have155

achieved appealing performance. As is shown in Fig. 1, for156

the first category, input fusion [41], [42], [69] refers to directly157

serializing the RGB image and depth map to form a four-158

channel RGB-D input. Especially, Song et al. [41] performed159

multi-scale pre-segmentation on the RGB-D pairs and pro-160

posed the multi-scale discriminative saliency fusion to gener-161

ate the final saliency map. In terms of late fusion [43], [44],162

Guo et al. [43] iteratively propagated the initial saliency map,163

which is produced by multiplication, to generate the final164

saliency map. Considering the quality of the depth map,165

Cong et al. [44] proposed a measure to evaluate the reliability166

of the depth map and used it to combine the two predictions.167

Meanwhile, for middle fusion [53], [70], [71], [72], [73]168

which adopts a two-stream structure to convert cross-modal169

features and fuse cross-level features, Fan et al. [53] used170

a gate mechanism to filter out the low-quality depth maps171

explicitly. Li et al. [72] proposed to fuse high-level RGB and172

depth features interactively and adaptively, discriminate the173

cross-modal features from different sources, and enhance RGB174

features with depth features at each level. Chen et al. [73]175

integrated a depth quality-aware subnetwork into the classic176

bi-stream structure, assigning the weight of the depth feature177

before conducting the fusion. Though these methods gain178

tremendous achievements in performance, they still encounter179

problems of incomplete feature fusion.180

Most existing fusion-based RGB-D SOD methods mainly181

adopt depth clues as supplements to assist the RGB branch182

since RGB and depth might play a disparate role in dif-183

ferent scenes, e.g., clear depth and complex RGB vs. clear184

RGB and fuzzy depth. Thus, apart from devising elabo-185

rate fusion approaches to merge them, it’s also necessary186

to take the two modalities individually, that is, ‘modality-187

aware’. Zhai et al. [70] have presented a bifurcated backbone188

strategy network. In this work, the proposed network fol-189

lows a bifurcated backbone strategy to recombine multi-level190

features into teacher and student features and integrate RGB 191

and depth modalities in a complementary manner. Specifi- 192

cally, the authors have proposed a depth-enhanced module 193

to excavate informative depth cues from the channel and 194

spatial views, achieving significant performance gain. Also, 195

Wang et al. [46] have proposed a simple yet effective method 196

to learn discriminative and modality-specific features for RGB 197

and depth and explicitly extract useful, consistent information 198

from them. Also, regarding the cross-modality consistency, 199

the authors have calculated the correlations of every pixel 200

pair from RGB (RGB correlation) or depth inputs (depth 201

correlation). Recently, Zhou et al. [74] have devised a novel 202

specificity-preserving network that explores shared informa- 203

tion and modality-specific properties. Given the methodology 204

innovation, the authors have utilized two modality-specific 205

networks and a shared learning network to generate individual 206

and shared saliency maps, yielding better segmentation results 207

by a cross-enhanced integration and a multi-modal feature 208

aggregation operation. 209

However, these modality-unaware or modality-near-aware 210

methods focus more on the modality-specific properties 211

regarding cross-level or cross-modality fusion in the encoding 212

phase, which might neglect that the decoding phase is required 213

to be modality-aware. Based on this insight, we propose a 214

modality-aware decoder to complete the whole training phase 215

of the encoder-decoder. 216

B. Attention Mechanism 217

Attention mechanisms [63], [75], [76], [77], [78] were 218

introduced into computer vision to imitate the aspect of the 219

human visual system. Such an attention mechanism can be 220

regarded as a dynamic weight adjustment process based on 221

features of the input image. 222

Kuen et al. [79] firstly introduced an attention mechanism 223

to salient object detection tasks. They used spatial trans- 224

former and recurrent network units to iteratively attend to 225

selected image sub-regions to perform saliency refinement 226

progressively and learn context-aware features from past iter- 227

ations to enhance saliency refinement in future iterations. 228

Zhai et al. [70] proposed a depth-enhanced module consist- 229

ing of sequential channel attention and spatial attention to 230

excavating informative parts of depth cues from the channel 231

and spatial views. Liu et al. [80] integrated the self-attention 232

and each other’s attention to propagate long-range contex- 233

tual dependencies to incorporate multi-modal information to 234

learn attention and propagate contexts more accurately and 235

selection attention to weight the newly added attention term. 236

Li et al. [81] proposed an alternate interaction unit composed 237

of several channel attention and spatial attention operations 238

to filter distracters’ in-depth features. Then the purified depth 239

features were exploited to enhance RGB features in turn. 240

Meanwhile, as is different from [82] employing depth infor- 241

mation as an error-weighted map to correct the segmentation 242

process, we utilize integrated information as a weighting 243

vector to guide the following fusion processing procedures. 244

We can learn the modal-level relationships between the two 245

modalities by employing modality-aware dynamic fusion. 246
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Fig. 4. The overall method pipeline, where the modality-aware decoder (MaD) is the major highlight of this paper. The proposed MaD targets at learning
the relationship between different modalities, which can promote the later multi-level RGB-D fusion process by letting the network to be aware whether a
fused RGB-D feature channel is helpful to the current salient object detection (SOD) task.

C. Graph Neural Network247

A GNN can be viewed as a message-passing algorithm,248

where representations for nodes are iteratively computed con-249

ditioned on their neighboring nodes through a differentiable250

aggregation function. Xia and Gao [83] proposed a dense251

graph convolution to enhance the local context information252

of joints, and spatial and temporal attention modules are253

used to adapt the intermediate feature maps. Xu et al. [84]254

constructed a super-pixel level spatiotemporal graph among255

multiple frame-pairs and imported graph data into the256

devised multi-stream attention-aware GCN. Luo et al. [85]257

proposed to distill and reason the mutual benefits between258

these RGB data and depth data sources through cascade259

graphs. Jiang et al. [86] propagated information across mul-260

tiple graphs and obtained a consistent representation and261

learning by integrating the information of multiple graphs262

simultaneously.263

Unlike all the above methods, our MaD introduces a feature264

weighting strategy to guide feature fusion and yield purified265

all-sided features given cross-modal and cross-level.266

III. PROPOSED METHOD267

A. Method Overview268

Fig. 4 shows the overall pipeline of our approach, which269

mainly includes two parts, illustrated from left to right: 1) a270

mid-fusion encoder supported by Depth Transfer Module271

(DTM), and 2) a novel Modality-aware Decoder (MaD) con-272

sisting of N sequential Modality-aware Fusions (MaF). The273

part 1) takes two different modalities (i.e., RGB and D) as274

input to perform mid-level saliency dense fusion, where the275

DTM narrows the feature gap between different modalities and276

serves as an intermediate modality. Technical details regarding277

part 1), which embeds RGB and D to a uniform feature space,278

will be provided in Sec. III-B. The part 2), also the highlight279

of this paper, targets a learning modality-aware relationship to280

guide the multi-scale and multi-level feature collection, which,281

compared with the conventional encoders (e.g., [72], [73]), can282

achieve better complementary RGB-D fusion. And this part283

will be detailed in Sec. III-C.284

Fig. 5. Detailed architecture of depth transfer module (DTM). CA: channel
attention; SA: spatial attention.

B. Mid-Level RGB-D Fusion via DTM 285

In general, when performing RGB-D saliency fusion, a vital 286

issue is that low-quality D — a widespread phenomenon in 287

RGB-D images, could bring noises or erroneous interruptions 288

to the fusion process resulting in poor salient object detection 289

(SOD) results. Therefore, instead of performing complete 290

dense RGB-D fusion at a time, the encoder shall use D to 291

complement RGB conservatively, i.e., those D regions which 292

contradict their RGB counterparts should be temporally omit- 293

ted. As such, we propose the Depth Transfer Module (DTM), 294

which consists of multiple multiplicative-based fusion oper- 295

ations to compress those contradicted RGB-D regions. The 296

proposed DTM targets two objectives: 1) mining high-quality 297

and practical D, and 2) using them to promote their RGB 298

counterparts; the corresponding technical details have been 299

shown in Fig. 5. 300

We use f i
r / f i

d to represent features derived from the 301

i-th layer of RGB/D encoder. DTM mainly consists of two 302

streams, i.e., the D stream (black arrows) and the fused RGB-D 303

stream (red arrows). Each stream performs multiplicative 304

operation-based feature enhancing in advance, e.g., residual 305

operations, spatial- and channel-wise attentions. Both streams 306

will be combined via parallel addition and multiplicative 307

operations. Notice that the multiplicative operation in the last 308

parallel fusion stage could effectively compress inconsistencies 309

between RGB and D, which can be very effective in mining 310

high-quality and practical D. Both spatial-wise attention (SA) 311

and channel-wise attention (CA) adopted in DTM follow the 312
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typical ways, which can be respectively represented as:313

CA( f ) = moc
(

f, MLP
[
GMPc(f )

])
, (1)314

where f denotes the input feature, GMPc is the global max315

pooling operation over the input feature slice, MLP stands for316

a two-layer perception, and moc(·, ·) performs channel-wise317

multiplication between its input;318

SA( f ) = ewm
(

f, Conv3
[
GMPs( f )

])
, (2)319

GMPs is the pixel-wise global max-pooling over the entire320

input feature tensor, Conv3 is a 3 × 3 convolution, and321

ewm(·, ·) performs element-wise multiplication between input.322

Notice that, as shown in Fig. 4, there are a total of 5 DTMs323

adopted in the mid-level fusion process, where each DTM324

correlates to an individual encoder level. Clearly, such cascade325

DTMs have two different inputs, where Fig. 5 illustrates the326

difference, i.e., the input of DTM{1} includes both f i
r and f i

d ,327

yet the input of DTM{i} consists of f i
d and f i

dr , where f i
dr is328

the output of DTM{i−1}. Hence, the output of DTM can be329

represented as:330

f i
dr =


DTM{i}

(
f 1
d , f 1

r

)
i f i = 1

DTM{i}
(

f i
d , f i−1

dr

)
i f i = {2, 3, 4, 5}.

(3)331

Here we take the 3rd DTM for instance, and its inside332

dataflow can be briefed as:333

DTM{3}( f 3
d , f 2

dr ) = Conv1
[
C
(

F3
d + F2

dr , F3
d ⊗ F2

dr

)]
,334

F2
dr = SA

(
CA( f 2

dr )× f 2
dr

)
×

(
CA( f 2

dr )× f 2
dr

)
,335

F3
d = SA

(
CA( f 3

d )× f 3
d
)
×

(
CA( f 3

d )× f 3
d
)
,336

(4)337

where f 2
dr is the output of DTM{2}, and Conv1 stands for a338

1 × 1 convolution. Next, each output of the cascade DTMs,339

i.e., the high-quality f i
dr , will be used to promote features340

embedded in the RGB decoder via addition operation.341

By performing the abovementioned procedure, we have342

decoupled the RGB-D saliency fusion process into three indi-343

vidual parts, i.e., f i
d , f i

dr , and f i
r , which respectively stand for344

1) raw D features, 2) consistency degree between RGB and D,345

and 3) RGB features conservatively enhanced by D. Though346

the RGB features have been conservatively enhanced, this347

fusion process is still modality-unaware, and some valuable348

D currently conflicting with RGB are still embedded in f i
d349

and f i
dr . Thus, in the following subsection, we will introduce350

a feasible way to model the relationship between different351

modalities, aiming to achieve modality-aware RGB-D fusion,352

which is critical for obtaining better complementary fusion353

status between RGB and D.354

C. Modality-aware Decoder (MaD)355

Most of the existing cross-modal fusion methods [87], [88],356

[89], [90] follow the conventional selective fusion methodol-357

ogy, where their fusion processes assume that RGB and D358

are equally helpful towards the SOD task, and the balances 359

between RGB and D are online learned by their network 360

under the guidance of the given learning objective. Such a 361

learning process is very ‘slack’ and modality-unaware. Yet, 362

the fact is that the optimal RGB-D complementary status 363

is usually determined by multiple modality-related aspects, 364

e.g., RGB scene complexity, and D quality. Consequently, 365

achieving an optimal balance between RGB and D might 366

be tough without considering such objective aspects. Thus, 367

we present the MaD, composed of N Modality-aware Fusion 368

modules (MaF), which can collect multi-scale and multi-level 369

features in a modality-aware way. As is shown in the right part 370

of Fig. 4, MaF mainly consists of two parts: Modality-wise 371

Reasoning and Level-wise Reasoning. The primary objective 372

of these two parts is to stay modality-aware when performing 373

multi-level feature collection. Both of Modality-wise Rea- 374

soning and Level-wise Reasoning include three parts, i.e., 375

Modality Relationship Module (MRM), Feature Embedding 376

(FE), Semantic Fusion (SF)/Detail Fusion (DF). 377

The relationships between different modalities can be 378

automatically formulated using MRM by performing 1D con- 379

volution over a modality graph that contains three nodes, i.e., 380

G, D, and F, which respectively represent RGB modality, 381

D modality, and an additional in-between modality, and the 382

technical details of this part will be provided in Sec. III-C.1. 383

The rationale of Level-wise Reasoning is quite similar 384

to that of Modality-wise Reasoning. The significant differ- 385

ence between them is that Modality-wise Reasoning directly 386

takes the outputs of the encoder as input (i.e., f 5
d , f 5

dr , 387

and f 5
r ). In contrast, the input of Level-wise Reasoning is 388

the output of Modality-wise Reasoning, where the learned 389

modality relationship guides the deep semantic feature fusion 390

via MaF. Specifically, MRM learns relationships between 391

different modalities, and FE projects the previously learned 392

modality relationship from the graph interaction space back 393

to the spatial coordinate space. Thus the embedded modality 394

relationship can be used to weight multi-level features (i.e., ri ). 395

SF and DF take both the output of FE and ri as input to achieve 396

modality-aware multi-scale/level feature collection. 397

1) Modality Relationship Module (MRM): To dynamically 398

learn the relationships between different modalities, we pro- 399

pose the MRM. As seen in Fig. 4, MRM performs graph 400

convolution over three nodes, i.e., G, D, and F, where the 401

in-between modality F, the output of DTM, is very slack, 402

and it can well reflect the harmony degree between RGB and 403

D — could be very useful to determine their complementary 404

status. By formulating such a relationship and using it to guide 405

the subsequential multi-level decoding process, we can achieve 406

better complementary status between RGB and D regarding 407

the given SOD task. 408

In our research community, multiple graph convolutions 409

exist to learn the relationships between graph nodes, e.g., the 410

classic GloRe [91]. In our MRM, we regard the output of the 411

last encoder layers as the graph nodes, i.e., f 5
d , f 5

dr , and f 5
r , 412

because such outputs are all semantics that are very helpful 413

in perceiving the relationship between different modalities. 414

Meanwhile, since f 5
d , f 5

dr , and f 5
r have already been projected 415

into a uniform feature space via the encoder, their relationship 416
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Fig. 6. Detailed architecture of SF and DF. Notice that a more fancy SD could bring some additional performance gain.

Fig. 7. Architecture of Feature Embedding (FE).

can be simply learned by using two sequential 1D convolu-417

tions, and MRM can be detailed as:418

{R1, R2, R3} ← MRM( f 5
d , f 5

dr , f 5
r )419

= Conv1D
[

Conv1D
[
C
(

f 5
d , f 5

dr , f 5
r
)]]

, (5)420

where {R1, R2, R3} denote the outputs of MRM, which421

respectively are the embedded modality-aware features; C is422

the typical feature concatenation operation, and Conv1D is423

a 1D convolution. MRM projects its input into an interactive424

space for graph nodes, and the relationships between different425

modalities have been implicitly embedded into it. Notice that426

a more fancy graph convolution (e.g., [91], [92], [93]) could427

further promote such features’ relationship embedding, yet,428

to focus on the main topic of this paper, we shall omit other429

choices.430

After obtaining {R1, R2, R3}, we use them as the dynamic431

fusion weights to drive the modality-aware fusion (MaF),432

where {R1, R2, R3} are used to guide multi-level feature433

collection towards the side output of the RGB encoder, i.e., ri434

demonstrated in Fig. 4. Both method rationale and technical435

details of MaF will be provided in the next subsection.436

2) Feature Embedding (FE): The primary target of FE437

is to perform feature projection, i.e., {R1, R2, R3} → fe,438

where fe is the learned modality relationship projected back439

in coordinate space, and thus fe can be used to weight the440

subsequential feature collection. Intuitively, all {R1, R2, R3}441

can be simply combined via feature concatenation. However,442

since {R1, R2, R3} respectively correlate to different modali-443

ties with varying importance towards the SOD task, we shall444

treat R2 as an auxiliary part to complement R1 and R3 in a445

cascade way.446

We have demonstrated the technical details of FE in Fig. 7,447

where the cascaded fusion follows a top-down direction.448

We also apply atrous spatial pyramid pooling (ASPP) to each449

stream, which enables multi-scale feature representation in a 450

very efficient way. The dataflow of FE can be formulated as: 451

fe = BConv
[
C
(

BConv
[
C(R̃1, R̃1 × R̃2)

]
, R̃2 × R̃3

)]
, 452

R̃i = BConv
[
ASPP

(
Ri

)]
, i ∈ {1, 2, 3}, (6) 453

where C denotes the feature concatenation operation, BConv 454

sequentially performs 3×3 convolution, batch normalization, 455

and ReLU operations, fe is the output of FE sharing an 456

identical size with Ri . 457

This way, the previously learned relationships between 458

different modalities have been embedded in fe. Thus we can 459

use it to guide multi-level feature collection, i.e., SF, and DF, 460

which will be detailed in the next subsections. 461

3) Semantic Fusion (SF) and Detail Fusion (DF): We 462

have demonstrated the technical details of both SF and DF in 463

Fig. 6. SF takes fe, the embedded modality relationship, as its 464

input, and a sequential of MaxPooling, SoftMax, and Conv1 465

operations are applied to convert fe into useable attention 466

tensors with desired sizes, i.e., f i
w. 467

Meanwhile, the side outputs of the RGB stream illustrated in 468

Fig. 4, i.e., ri , have included partial D information. Thus, given 469

a conventional saliency decoder (e.g., CPD [94]), one can 470

collect them in a multi-level manner to formulate final saliency 471

maps. The limitation of such a modality-unaware decoder has 472

been mentioned multiple times before. In sharp contrast to 473

the conventional decoders, the fe is additionally available in 474

our approach, which can make the decoding process modality- 475

aware. 476

In view of the SOD task, correctly localizing salient 477

objects is usually more critical than achieving boundary salient 478

object segmentation, and features derived in deeper layers 479

are more helpful than those in shallower layers towards this 480

aspect. Therefore, as shown in SF of Fig. 6, we respec- 481

tively apply f i
w as attentions on deeper semantic features 482

r3, r4, r5, where modality-aware high-level semantic features 483

(i.e., f 11
w , f 22

w , f 33
w ) can be obtained accordingly. This process 484

can be detailed as the following equation, in which we take 485

f 11
w for instance. 486

f 11
w = r3 ⊙ f 1

w, f 1
w = Conv1

[
SoftMax

(
MaP( fe)

)]
, (7) 487

where ⊙ denotes the broadcast multiplication, Conv1 is 488

a 1 × 1 convolution which resizes its input to any wanted 489

size; MaP is the typical max-pooling operation, and softmax 490

operation ensures that f 1
w can be used as an attention tensor. 491
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TABLE I
QUANTITATIVE EVALUATION OF MAJOR COMPONENTS USED IN OUR APPROACH, WHERE ✓: ‘USING’, ✗: ‘WITHOUT USING’. THE FULL DESCRIPTIONS

REGARDING MARKS FROM 1⃝ TO 4⃝ CAN BE FOUND IN SEC. IV-E

To achieve a multi-level feature collection, the rest of the492

encoder’s side outputs (i.e., r1 and r2) should also be included.493

Intuitively, both r1 and r2 can be simply combined with494

the output of SF, e.g., f 11
w . However, since f 11

w , f 22
w , f 33

w495

are pretty redundant and their primary values are to localize496

salient objects, it could lead to incomplete SOD results if497

such redundant feature responses are not removed. As such,498

we further explore the relationship between f 11
w , f 22

w , f 33
w ,499

an additional Level-wise Reasoning, which can filter such500

redundant information.501

As illustrated between SF and DF in Fig. 6, an additional502

MRM has been applied over the output of SF, where all503

f 11
w , f 22

w , f 33
w have been projected back to graph interaction504

space again and latterly projected back to the coordinate space505

via FE, i.e., f̃e. Our DF can be detailed as the following506

equation, where we take the top line for instance:507

f̃ 11
w = r1⊙ f̃ 1

w, f̃ 1
w = Conv1

[
SoftMax

(
MaP( f̃e)

)]
,508

f̃e = FE
(

MRM
(

f 11
w , f 22

w , f 33
w

))
, (8)509

where ⊙ denotes the broadcast multiplication, the details of510

FE and MRM can be found respectively in Sec. III-C.2 and511

Eq. 5. We can achieve modality-aware and multi-level feature512

collection using both SF and DF, and the MaF will be repeated513

N times. As seen in Fig. 6, the output of the N -th MaF will be514

directly fed to a saliency encoder (SD) to obtain final saliency515

prediction. The technical details of SD will be given in the516

next subsection.517

D. Saliency Decoder (SD)518

After repeating MaF N times, we can get three dynamic519

fusion features, i.e., f̃ 11
w , f̃ 22

w , f̃ 33
w , which have already been520

embedded in cross-scale and cross-level modality relation-521

ships. To produce the final saliency map, we propose the522

SD. Instead of collecting by up-sampling multi-scale and523

multi-level features as the typical encoder does, the pro-524

posed SD shall only focus on: simultaneously combining525

f̃ 11
w , f̃ 22

w , f̃ 33
w and performing up-sampling. The architectural526

detail of SD can be seen in the right part of Fig. 6.527

IV. EXPERIMENTS 528

A. Datasets 529

We evaluate the effectiveness of our model on six widely 530

used public benchmark datasets, i.e., NJUD [95], NLPR [96], 531

SIP [53], STEREO [97], LFSD [98], and SSD [99]. NJUD [95] 532

includes 2,003 stereo image pairs with various resolutions. 533

Among these image pairs, 1,400 are used as the training set, 534

100 as the validation set, and the remaining as the testing 535

set. NLPR [96] consists of 1,000 images from 11 types of 536

indoor and outdoor scenes. Among them, 650 are used as 537

the training set, 50 as the validation set, and the remaining 538

300 as the testing set. SIP [53] consists of 1,000 high- 539

resolution images that cover diverse real-world scenes from 540

various viewpoints, poses, occlusions, illuminations, and back- 541

grounds. STEREO [97] has 797 stereoscopic images. These 542

images are mainly collected from the Internet and 3D movies. 543

Depth images are generated by leveraging an optical method. 544

LFSD [98] is a relatively small dataset for testing, which 545

contains 100 images with depth information captured via a 546

Lytro light field camera and manually labeled ground truths. 547

The resolutions of these images are relatively small. SSD [99] 548

has 80 images picked up from stereo movies. 549

B. Evaluation Matrices 550

Three metrics are adopted for quantitative evaluation, 551

including S-measure (Sm) [100], F-measure (Fm) [101], 552

E-measure (Em) [102], and mean absolute error (MAE). 553

Specifically, S-measure is utilized to solve the problem of 554

structural measurement from the perspective of region-aware 555

and object-aware. F-measure offers a unified solution to 556

evaluating non-binary and binary maps. E-measure combines 557

local pixel values with the image-level mean value to jointly 558

evaluate the similarity between the prediction and the ground 559

truth. The MAE denotes the average pixel-wise difference 560

between saliency maps and the ground truth. 561

C. Implementation Details 562

We implemented MaD by PyTorch with an NVIDIA 563

GeForce 2080 GPU. Following [35], [64], the proposed MaD 564

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 30,2024 at 06:32:21 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: IMPROVING RGB-D SALIENT OBJECT DETECTION VIA MODALITY-AWARE DECODER 6131

TABLE II
QUANTITATIVE COMPARISON WITH CURRENT SOTA MODELS ON SIX WIDELY-USED DATASETS IN TERMS OF S-MEASURE (SM), F-MEASURE (FM),

E-MEASURE (EM), AND MEAN ABSOLUTE ERROR (MAE). ↑ MEANS THAT THE LARGER THE NUMERICAL VALUE, THE BETTER THE MODEL,
WHILE ↓ MEANS THE OPPOSITE. THE TOP-3 RESULTS ARE RESPECTIVELY MARKED IN RED, GREEN AND BLUE

is trained on a composite training set, including 1,400 samples565

from NJUD [95] dataset and 650 samples from NLPR [96]566

dataset, and the input is resized to 352× 352 resolution. The567

initial parameters of the feature encoding network are adopted568

from the pre-trained ResNet50 model [51]. The learning rate569

is set to 1e-4 for the Adam optimizer [103] and is later570

decayed by 10 at 60 epochs. We adopt cross-entropy loss for571

supervision.572

D. Comparison With State-of-the-Arts573

To demonstrate the effectiveness of the proposed method,574

we compare it with 19 state-of-the-art (SOTA) meth-575

ods, i.e., PCA18 [104], PDNet19 [105], CPFP19 [106],576

DMRA19 [40], S2MA20 [80], A2dele20 [107], D3Net21 [53],577

DANet20 [108], ICNet20 [72], cmMS20 [109], CMWNet20578

[110], CoNet20 [111], UCNet20 [52], ATSA20 [112],579

BBSNet21 [70], BTSNet21 [64], DCF21 [113], SPNet21 [74],580

and ASIF21 [68].581

The compared results are either reproduced by the released582

codes or saliency maps provided by authors, and the quanti-583

tative comparison results are shown in Table. II. Our method584

(see in Sec. III-C) performs the best on LFSD and NLPR585

datasets and shows competitive performance on STEREO,586

NJUD, and SIP datasets. More clearly, our method consistently587

outperforms all other compared SOTA methods in terms of the588

Fm metric. In the STEREO set, our method outperforms other589

competitors in terms of the Sm metric, e.g., 0.910 (ours) v.s.590

0.909 (BBSNet). In the LFSD set, our method improves 3.3%591

in terms of the Fm metric.592

Fig. 8 further shows several visual comparisons of MaD593

with the latest representative models. From top to bottom,594

in rows #1, #2, and #5, we show three examples when image595

scenes with poor depths. Our method produces more reliable596

Fig. 8. Visual comparison between our method and several most represen-
tative SOTA models.

results, while other RGB-D saliency detection models fail 597

to locate salient objects in images with low-quality depth. 598

In row #7, we show an example with low contrast RGB, where 599

it is challenging to locate all salient objects accurately. Our 600

method locates all salient objects and segments them more 601

accurately, generating sharper edges than other approaches. 602

Moreover, in row #4 and row #8, both RGB and depth are 603

of high quality, and our method generates the best result than 604

any other SOTAs. We also show an example under complex 605

conditions with fine-grained details in row #3 and row #6. 606

Some approaches fail to complete detection, but our method 607

can still perform well. 608

E. Component Evaluation 609

To validate the effectiveness of our method, we have con- 610

ducted an extensive component evaluation, and the results have 611

been shown in Table I. To enable a successful code running, 612
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TABLE III
ABLATION STUDIES TOWARDS THE EFFECTIVENESS OF DTM AND MRM. THE BEST RESULTS ARE MARKED BY BOLD FONT

we have replaced those key components which need to be613

verified by simple operations, e.g., the proposed MRM has614

been replaced by simple feature concatenation and convo-615

lution. We treat this replaced model as a baseline, and the616

qualitative result has been shown in the 1st column denoted617

by ‘B’.618

Denoted by mark 1⃝, the effectiveness of the proposed619

DTM (Sec. III-B) can be observed by comparing line 1 and620

line 2, where the baseline model equipped with DTM can621

achieve persistent performance gain, e.g., 0.820 vs. 0.851 in622

terms of Fm in NJUD set.623

Marked by 2⃝, i.e., lines 3-5 and 11, we can easily verify624

the effectiveness of the proposed MRM (Sec. III-C.1). In these625

cases, we have removed MRM from either modality-wise rea-626

soning (denoted by MR), level-wise reasoning (characterized627

by LR), or both. Comparing models partially using (lines 3-628

4), the model using MRM (line 11) can steadily improve629

overall performance. Furthermore, the model that removed630

MRM (line 5) performs the worst. Notice that the model using631

MRM in Modality-wise Reasoning is slightly better than the632

model using MRM in Level-wise Reasoning, e.g., the Fm633

metric has been improved from 0.899 to 0.901 in the NJUD634

set, showing the importance of the proposed Modality-wise635

Reasoning.636

As is indicated by mark 3⃝, lines 6-7 can well637

reflect the effectiveness of FE (Sec. III-C.1) and SF/DF638

(Sec. III-C.1) and the necessity of using Level-wise Rea-639

soning can be confirmed by line 8. Compared with our640

complete model in line 11, both models either without using641

FE or SF/DF perform worse, where the Sm metric in the642

NLPR set has decreased respectively from 0.901→0.888 and643

0.901→0.891. The reason is also quite apparent, i.e., FE can644

integrate different modality features and obtain more delicate645

regions of interest, and SF/DF can achieve modality-aware and646

multi-level feature collection. Also, compared with line 11,647

line 8 illustrates the performance of a model which removes648

the Level-wise Reasoning, and, as expected, the performance649

drops significantly.650

Highlighted by mark 4⃝, we have verified the necessity of651

the proposed N-step MaF reasoning (line 9) and the effective-652

ness of using the last layer of the encoder as MaD’s input653

(line 10). As shown in line 9 (we set the default iteration time654

as 3, and the corresponding ablation study will be conducted655

in Sec. IV-F.4), repeating MaF multiple times could improve656

performance as expected. Also, as denoted by line 10, the657

advantage of using the 5th level features against the 3rd level658

features as the MaD’s input can be easily observed, e.g., 0.928 659

vs. 0.933 in terms of Sm in the NLPR set. The reason is that the 660

5th level features contain more semantic information, which 661

can be helpful to precisely locate salient objects. In contrast, 662

the 3rd level features have redundant information, hindering 663

modality-aware fusion. 664

F. Ablation Studies 665

We have provided comprehensive ablation studies to fur- 666

ther evaluate the contribution of each key component in 667

our method. Specifically, we investigate 1) the importance 668

of DTM, 2) the effectiveness of MRM, 3) the influence 669

of iterations of MaD, and 4) the number of sequential 1D 670

convolutions. We change one component each time and retrain 671

variants with the same hyperparameters and training settings. 672

1) Importance of DTM: To validate the effectiveness of 673

the proposed DTM (Sec. III-B), we set up three experiments 674

with the same parameter settings. Specifically, ‘DTM†’ means 675

removing all data flows between sequential DTMs in hori- 676

zontal direction (i.e., f i
dr in Fig. 4), while ‘DTM††’ denotes 677

removing all vertical data flows which output depth informa- 678

tion to RGB stream. We use ‘w/o DTM’ to represent without 679

using DTM. As shown in Table III, when no interaction 680

exists between RGB and D branches, the model performs the 681

worst. Also, though using only partial interactions between 682

DTM units can achieve some performance gain (about 2.6% 683

improvement in terms of Sm metric), the complete interaction 684

version has exhibited an undeniable advantage, e.g., the Fm 685

metric can be improved from 0.875 to 0.892 and 0.868 to 686

0.892 respectively in the STEREO set. Such comparative 687

experiments show that the DTM is crucial for downstream 688

Modality-aware Reasoning. Our proposed DTM can mine 689

high-quality and practical D and use them to promote their 690

RGB counterparts. 691

2) Effectiveness of MRM: In the proposed framework, the 692

MRM (Sec. III-C.1) is adopted to learn inter-modality relation- 693

ships, where the learned relationship is used to guide the fusion 694

process between RGB and D. To validate its effectiveness, 695

we have tried to delete this MRM (this model has also been 696

reported in line 5 of Table I), denoted as ‘w/o MRM’. 697

Besides, we have also compared two other plain feature 698

fusion strategies with our MRM, i.e., performing inter modal- 699

ity fusion via either element-wise multiplication (denoted by 700

‘MUL’) or simple concatenation with convolution (denoted by 701

‘CAT’). As shown in Table III, comparing ’w/o MRM’ with 702
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TABLE IV
QUANTITATIVE RESULTS OF THE NUMBER OF MAD ITERATIONS (N). THE BEST RESULT IS HIGHLIGHTED BY BOLD FONT

TABLE V
ABLATION STUDY REGARDING THE NUMBER (i) OF SEQUENTIAL 1D CONVOLUTIONS (SEC. III-C.1)

Fig. 9. Qualitative demonstration of modality relationship module (MRM).

our full model (‘w MRM’), there is an average 2% margin703

in terms of the Fm metric. Comparing ‘MUL’ and ‘CAT’704

with our full model, we can see that our MRM outperforms705

them clearly, e.g., 0.914 vs. 0.921 and 0.912 vs. 0.921 in706

terms of Sm over NLPR set. The results demonstrate the707

effectiveness of extracting high-level feature representations708

using graph relation among different modalities. The reason is709

that graph structure can obtain a harmonious degree between710

different modalities to learn the complementary relationships.711

For a better reading, we have also provided some qualitative712

demonstrations in Fig. 9.713

3) Validity of Modality-Aware Fusion (MaF): To fur-714

ther verify the advantages of the proposed “modality-aware715

fusion”, we have conducted a quantitative test to see if the716

claimed new fusion brings our performance gain. In the exper-717

iment, we propose to investigate the absolute performance718

gain obtained by the fusion module. Our rationale is that a719

more powerful fusion shall gain more performance against720

low-level saliency. Here we have selected 3 most represen-721

tative SOTA models (e.g., SPNet21 [74], ATSA20 [112], and722

CMW20 [110]), where their RGB saliency and D saliency723

are respectively obtained by averaging each sub-stream’s side- 724

output quantitative scores. The results can be seen in Table VI. 725

As shown in the table, both low-level saliency (RGB 726

saliency and D saliency) cues in our model have no clear 727

advantages over other models. However, as suggested by the 728

“Numeric Gain”, our fusion process has performed the best. 729

Notice that, since our fusion has solely focused on the learning 730

modality relationships with a much simpler implementation, 731

it is reasonable to infer that the proposed modality-aware 732

fusion is very effective. Besides, the Numeric Gains achieved 733

by the other three compared models are pretty limited because 734

these methods have failed to be completely modality-aware. 735

4) Influence of MaD Iterations: We have conducted an 736

ablation study regarding the iterations N (Sec. III-C), and the 737

detailed results can be found in Table IV. Limited by GPU 738

storage, we only chose N = 1, 2, 3, 4, in which N = i means 739

to iterate the whole MaD for i times. As shown in Table IV, 740

the overall performance of our method is moderately sensitive 741

to the choice of N , in which the overall performance via 742

N = 3 exhibits the best performance in general, and explicit 743

performance degradation can be found when we assign N = 1. 744

Meanwhile, when assigning N to 4, the performance has also 745

decreased, e.g., 0.933 vs. 0.931 in terms of the Sm metric on 746

the NLPR set, and thus we set N = 3 as the optical choice to 747

strike the trade-off between accuracy and efficiency. 748

Further, we have included qualitative illustrations of the 749

modality-aware (ours) and modality-unware (S2MA [80]) 750

method in the RGB-D fusion process, which can be seen 751

in Fig. 10. Expressly, we have provided the last three MaF 752

output results (because we adopt three MaFs in our network 753

to balance the efficiency and over-smoothing problem), e.g., 754

MaF-1, MaF-2, and MaF-3 (the MaF-3 is utilized to produce 755

final saliency maps). And also, we have illustrated the last 756

three fusion processing results of S2MA, denoted by D1, D2, 757

and D3 (the D3 is utilized to produce final saliency maps). 758

As we can see, in almost all scenes of low contrast (row 1), 759

complex background (row 2), and simple objects (row 3), our 760

MaF-3 can obtain superior visual results. The main reason is 761

that the modality-unaware method has “equally” considered 762

depth and RGB for all image scenes. As a result, when one 763
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TABLE VI
QUANTITATIVE VERIFICATIONS TOWARDS THE ADVANTAGES OF BEING

COMPLETE MODALITY-AWARE. HERE WE COMPARE OUR METHOD
WITH THE OTHER 3 REPRESENTATIVE SOTA MODELS. ‘NUMBER

GAIN’ CAN BE COMPUTED BY: {FUSED_SAL−MAX(RGB_SAL,
DEPTH_SAL)}, WHERE RGB_SAL AND DEPTH_SAL ARE

THE LOW-LEVEL SALIENCY CUES, WHICH CAN BE
COMPUTED BY AVERAGING THE NUMERIC SCORES

OF SIDE-OUTPUTS RESPECTIVELY FROM RGB
BRANCH AND DEPTH BRANCH OF THE

CONSIDERED SOTA MODEL

TABLE VII
DETAILED AVERAGED TIME COST FOR A SINGLE IMAGE. THIS RESULT

WAS OBTAINED ON A PC WITH AN INTEL(R) XEON(R) CPU, NVIDIA
GTX2080 GPU (WITH 8G RAM) AND 32G RAM. THIS

EXPERIMENT WAS CARRIED OUT ON THE SSD SET

or both of the two modalities are of poor quality, the one with764

more inferior quality will bring a negative impact.765

We have also included the computational cost of each766

component in Table VII. We can see that the primary time767

computation of the network lies in the Key Component 2 —768

Modality-aware Fusion, which takes almost 95% of the total769

time. Notice that each sub-part in Key Component 2 has a770

reasonable computation cost.771

5) Numbers of Sequential 1D Convolutions: To verify the772

effectiveness of the adopted 1D Convolutions in the learn-773

TABLE VIII
ABLATION STUDY ON OTHER RGB-D METHODS BY REPLACING

THE DECODING FUSION STRATEGIES WITH OUR
MODALITY-AWARE DECODER (MAD)

ing modality relationship (Sec. III-C.1), we have conducted 774

an extensive ablation study regarding the number of 1D 775

Convolutions from 1 group to 4 groups (two sequential 1D 776

Convolutions are regarded as a group, indicated by i). From 777

detailed results in Table. V we can see, with the increased 778

groups of 1D convolutions, the performance has declined, e.g., 779

when increasing i from 1 to 4, the Sm metric in the NJUD 780

set has decreased from 0.921→0.916. The reason is quite 781

similar to the phenomenon in fully convolution layers — too 782

many sequential non-linear mappings could lead to the learned 783

model overfitting. Thus, we have chosen i = 1 as our default 784

setting. 785

6) Applications of MaD to Other RGB-D SOTA Models: 786

We have also tried to apply our method to other RGB-D 787

SOTA models, as shown in Table VIII. In this experiment, 788

we have newly replaced the decoding fusion strategies of 789

several other RGB-D methods (BBSNet [70], SPNet [74], and 790

DCF [113]) with our modality-aware decoder. We find that 791

the three SOTA methods equipped with our modality-aware 792

decoder can achieve better results, suggesting the relatively 793

generic nature of our proposed method. 794

G. Limitations 795

We demonstrate some failure cases in Fig. 11. Usually, 796

our method still faces two challenges: 1) salient objects with 797

varying subparts, e.g., the 1st row of Fig. 11, and 2) image 798

scenes with multiple salient objects, e.g., the 2nd row of 799

Fig. 11. In cases with high-quality depth yet salient objects 800

with significant color differences between their subparts, our 801

method fails to detect them accurately and mistakenly high- 802

lights some non-salient details. In the bottom row, there are 803

multiple similar objects in RGB images and depth maps, but 804

our method highlights only part of them. This is because 805

different salient objects are usually localized in different depth 806

layers, which mistakenly causes our method to treat salient 807

objects far from the camera as distractions. 808

H. Visualized Comparison Between Modality-Aware and 809

Modality-Unaware 810

In Fig 12, we have compared our method with some 811

modality-unaware methods (UCNet20 [52], D3Net21 [53], 812

ICNet20 [72], CoNet20 [111], BTSNet21 [64], and 813

S2MA20 [80]) regarding four types of RGB and Depth 814

combinations (see subfig-A to subfig-B). As shown in 815

subfig-A of Fig 12, when both RGB and depth are of high 816
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Fig. 10. Visualizations of modality-aware (ours) and modality-unware (S2MA [80]) methods in terms of the last three fusion processing results in decoding
phase. MaF denotes Modality-aware Fusion.

Fig. 11. Demonstration of some representative failure cases.

TABLE IX
MODEL SIZE AND RUNNING TIME COMPARISONS

quality (denoted by ‘+’), modality-aware and modality-817

unaware fusion-based methods can simultaneously obtain818

satisfying results in terms of scenes of clear boundary819

and multiple objects (though our modality-aware fusion820

slightly outperforms modality-unaware fusion), since both821

RGB and depth can positively contribute to the results.822

However, when one of the RGB and depth is low-quality823

(see subfig-B and subfig-C), the results of modality-824

unaware fusion-based methods degrade. The reason is that825

modality-unaware fusion-based methods do not appropriately826

learn the complemental relationship between RGB and depth,827

and they merely integrate the two-modality feature slices in a828

local manner. In practice, when one modality dominates (the 829

higher-quality one) the fusion, the other (the lower-quality 830

one) may hinder the fusion and bring about negative effects. 831

Nevertheless, these methods treat the two modalities equally, 832

ignoring the harmony degree (what we call ‘modality-aware’) 833

between RGB and depth, which determines the degree of 834

complementarity. Conversely, our modality-aware method 835

can adaptively bias to the appropriate modality guided by 836

the learned relationships between RGB and depth. Therefore, 837

in cases of one modality dominating, our method is optimal 838

and has a higher performance ceiling. In subfig-D, in more 839

challenging cases when objects are occluded and small, and 840

depth maps are fuzzy, our modality-aware fusion can still 841

outperform those modality-unaware fusions since though both 842

two RGB and depth are low-quality, our method can still 843

appropriately learn the complemental relationship between 844

RGB and depth and bias to the appropriate modality, which 845

demonstrates the robustness of modality-aware fusion strategy. 846

In summary, our modality-aware fusion strategy can sur- 847

pass most of the existing modality-unaware fusion and will 848

enlighten future work regarding how to fully and appropriately 849

learn the relationships during cross-modality fusion. 850

I. Discussion of Our Performance Gain 851

Because we have adopted multiple sequential MaF mod- 852

ules to learn inter-modality relationships, our model size is 853

relatively large. In Table IX, we have conducted a model size 854

comparison, where our model lies in the middle level among 855

all compared methods. To verify whether our performance 856

gain is brought by additional model size, we have increased 857

the baseline model size by using additional decoder layers, 858

ensuring a fair comparison in model size. This modified 859

baseline model has been denoted by ‘B+DE’. The results 860

have shown that increasing the model’s learning capacity 861

cannot ensure a corresponding performance gain, even if the 862

number of parameters is competitively large. By comparing 863
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Fig. 12. Visualized comparison among our method and some modality-unaware methods (UCNet20 [52], D3Net21 [53], ICNet20 [72], CoNet20 [111],
BTSNet21 [64], and S2MA20 [80]). ‘+’ denotes high quality, and ‘-’ denotes low quality.

the modified baseline with our model, we can easily notice a864

significant performance margin, e.g., the Sm metric of NLPR865

has been increased from 0.902 to 0.933, which is a shred of866

solid evidence to show that the additional model size does not867

simply bring our performance gain.868

V. CONCLUSION AND FUTURE WORKS869

In this paper, we have proposed a novel modality-aware870

decoder to learn the relationship between different modali-871

ties. The learned inter-modality relationship is used to guide872

RGB-D saliency fusion. The essential technical contribution873

is a novel idea to enable the RGB-D fusion process to be874

modality-aware. Thus our fusion enables a significant per-875

formance improvement without fancy network design. Our876

key idea can also inspire other multi-modality-related fusion877

works, where the usage of intermodality relationships is878

beneficial in achieving better complementary status between879

different modalities. We have also conducted an extensive880

comparison and component evaluation, where the quantitative881

comparison has confirmed our performance gain, and the quan-882

titative component evaluation has verified the effectiveness of883

each significant component adopted in our approach. We have884

also released our codes and results, which can potentially885

benefit our research community in the future. In the near886

future, we are particularly interested in reducing the model size887

without degrading model performance. We plan to devise more888

efficient graph-based operations to substitute current plain889

1D convolutions, i.e., adopting a more appropriate dynamic890

adjacent matrix to fit our RGB-D ISOD task.891
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