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Improving RGB-D Salient Object Detection via
Modality-Aware Decoder

Mengke Song, Wenfeng Song, Guowei Yang™~, and Chenglizhao Chen™, Member, IEEE

Abstract— Most existing RGB-D salient object detection (SOD)
methods are primarily focusing on cross-modal and cross-level
saliency fusion, which has been proved to be efficient and
effective. However, these methods still have a critical limitation,
i.e., their fusion patterns — typically the combination of selective
characteristics and its variations, are too highly dependent on
the network’s non-linear adaptability. In such methods, the bal-
ances between RGB and D (Depth) are formulated individually
considering the intermediate feature slices, but the relation at
the modality level may not be learned properly. The optimal
RGB-D combinations differ depending on the RGB-D scenarios,
and the exact complementary status is frequently determined by
multiple modality-level factors, such as D quality, the complexity
of the RGB scene, and degree of harmony between them.
Therefore, given the existing approaches, it may be difficult for
them to achieve further performance breakthroughs, as their
methodologies belong to some methods that are somewhat less
modality sensitive. To conquer this problem, this paper presents
the Modality-aware Decoder (MaD). The critical technical inno-
vations include a series of feature embedding, modality reasoning,
and feature back-projecting and collecting strategies, all of which
upgrade the widely-used multi-scale and multi-level decoding
process to be modality-aware. Our MaD achieves competitive
performance over other state-of-the-art (SOTA) models without
using any fancy tricks in the decoder’s design. Codes and
results will be publicly available at https://github.com/
MengkeSong/MabD.

Index Terms— RGB-D salient object detection, modality-aware
fusion, deep learning.

I. INTRODUCTION AND MOTIVATION

SALIENT Object Detection (SOD) aims at well-
segmenting the most eye-attracting objects in a given
image scene, and this topic has been extensively studied for
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Pictorial demonstrations of the existing RGB-D fusion schemes.
and X to denote advantages and disadvantages.

over 20 years. Thanks to the rapid development of deep
learning technology, it has been widely used in various com-
puter vision-related downstream applications, such as image
retrieval [1], [2], [3], [4], image translation [5], [6], object/face
detection [7], [8], [9], [10], [11], segmentation [12], [13],
compression [14], [15], and even video tracking [16], [17].
Albeit making significant progress, we have observed that new
performance improvement achieved by the recent works [18],
[19], [20], [21], [22] shrinks significantly, indicating the solely
RGB image-based SODs have reached a performance bottle-
neck.

Different from the single RGB SODs [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], RGB-D SODs [34],
[35], [36], [37], [38] have become a scorching research topic
recently since depth-sensing cameras are more accessible than
ever before, e.g., even for a smart mobile phone, depth-
sensing cameras have been widely equipped [39]. It is both an
opportunity and a challenge since the additional D information
enhances the potential to achieve a further SOD performance
improvement, yet designing an appropriate fusion logic is also
not an easy task.

In general, the fusion methods adopted by state-of-the-art
(SOTA) RGB-D SODs can be categorized into three groups:
1) early fusion [41], [42], 2) late fusion [43], [44], and
3) mid fusion [45], [46], [47], [48], [49], [50], as illus-
trated in Fig. 1. Though early fusion and late fusion have
their advantages, they usually perform poorly due to the
absence of feature interaction. Thus the current mainstream
SOTA models have widely adopted the mid-fusion. Nev-
ertheless, such a widely-used fusion scheme has a critical

limitation, i.e., the fusion process is ‘modality-unaware!” or

"Here we use the term ‘modality-unaware’ to highlight that the modality
relationship was inappropriately learned by the existing SOTA works. We are
also fully aware that the current methods can somehow learn the modality
relationship, but not as appropriate as our approach.
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Real instances to illustrate the advantage of our modality-aware fusion against the widely-used modality-unaware mid fusion. In view of the

conventional mid fusion (DMRA [40]), the RGB-D combination rules learned in common senses (a) might not be suitable for uncommon scenes (b), and

such a problem can be solved only if the modality relationship has been consi

‘modality-near-aware’. An optimal complementary fusion sta-
tus between RGB and D is often determined by multiple
modality-related factors, e.g., D quality, the complexity of the
RGB scene, and harmony degree between RGB and D; all such
factors are objective, and they might not be perceived by the
current SOTA models, because their fusion logics simply focus
on learning non-linear mapping over intermediate features
derived by off-the-shelf encoders (e.g., ResNet [51]).

To facilitate a better clarification, Fig. 2 provides some
pictorial instances. From the perspective of mid-fusion, the
problem is that those RGB-D combination rules are learned
from ordinary RGB senses (a). And the majority of train-
ing instances in real works usually adapt poorly in facing
uncommon scenes (RGB saliency conflicts with D saliency),
e.g., (b). The main reasons are twofold: 1) those uncommon
scenes are usually the minorities, leading to biased training;
2) more importantly, such mid fusion often formulates its
RGB-D combination rules by considering intermediate feature
slices individually — a very local methodology, leading to the
training task to be very complex and, eventually, making the
biased learning situation worse.

As shown in the first two rows of Fig 3, a typical case whose
depth shall play a dominant role, the modality relationship in
such case cannot be well learned by the existing methods. Thus
the salient object has been detected inaccurately. Also, when
the RGB takes hold in the detection shown in the last two
rows, the existing SOTA methods still perform not very well,
which are inferior to our modality-aware method in such cases.
The main reason is that these methods do not appropriately
learn the complemental relationship between RGB and depth;
they merely integrate the two-modality feature slices in a
local manner. The harmony degree between RGB and depth
determines the degree of complementarity, and the harmony
degree is what we call ‘modality-aware’.

In contrast to the existing works, the major highlight of our
approach, a novel Modality-aware Decoder (MaD) demon-
strated in Fig. 2 (c), is to reason between different modalities.
The learned modality relationships will later be used to guide
the subsequent dense feature collection, making the decoding
process focus more on the modality relationship and thus
perform well in those uncommon scenes.

More theoretically speaking, our approach divides all poten-
tial RGB-D combinations into coarse-granularity ‘boxes/cases’
in advance (Fig. 2-c), and thus the subsequent fine-granularity

dered in advance, e.g., (c).

Depth

UCNet D3Net

Fig. 3. Visualized comparison among our method and some modality-
unaware methods (UCNet [52], D3Net [53] and DMRA [40]). The first two
lines represent complex RGB scene with clear depth, while the last two lines
denote clear RGB scene with low-quality depth.

slice-level combinations can be learned correctly. The pro-
posed MaD mainly consists of two parts, i.e., 1) a feasi-
ble way to decouple and represent RGB-D images into a
modality-related feature space, which solids the basis of our
MaD, and will be detailed in Sec. III-B, and 2) a series of
feature embedding and back-projecting strategies are devised
to convert the SOTA decoding process to be modality-aware,
and this part will be detailed in the rest of Sec. III.

The key contributions of this paper can be summarized in
the following three aspects:

« As one of the first attempts, this paper has raised attention
regarding the importance of modality relationships in
performing RGB-D SOD. In addition, some in-depth
discussions and explanations of this issue have been
conducted.

This paper has devised a feasible solution to per-
form modality-level reasoning to achieve modality-aware
RGB-D fusion. A series of functional modules are pre-
sented to facilitate the use of modality relationships to
guide multi-scale/level feature collection.

We have conducted extensive experiments to verify the
effectiveness and superiority of our approach (i.e., MaD).
Both codes and results are now publicly available, poten-
tially benefiting our research community in the near
future.
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II. RELATED WORK

A. RGB-D Salient Object Detection

Traditional methods mainly rely on hand-craft features [54],
[55], [56], [57], [58], using a large amount of saliency prior
information for image saliency detection, such as contrast
prior, image background prior, target prior, and so on. Zhu
and Li [54] proposed a multi-layer back-propagation saliency
detection algorithm based on depth mining to exploit depth
cues from three different layers of images. Zhu et al. [55] used
a center-dark channel prior by generating a center-dark channel
map based on a center saliency prior and a dark channel prior.
They then fused the initial saliency map with the center-dark
channel map to generate the final saliency map. This algorithm
is straightforward and can also be applied to small object
detection. However, these methods seem simple but disregard
the differences between the RGB and depth modalities and
thus might not achieve reliable results.

As deep learning comes into view, many CNNs-based meth-
ods [50], [59], [60], [61], [62], [63], [64], [65], [66], [67]
dominate this field. Among them, fusion-based methods [41],
[42], [43], [44], [53], [68], [69], [70], [71], [72], [73] have
devoted significantly to RGB-D saliency detection and have
achieved appealing performance. As is shown in Fig. 1, for
the first category, input fusion [41], [42], [69] refers to directly
serializing the RGB image and depth map to form a four-
channel RGB-D input. Especially, Song et al. [41] performed
multi-scale pre-segmentation on the RGB-D pairs and pro-
posed the multi-scale discriminative saliency fusion to gener-
ate the final saliency map. In terms of late fusion [43], [44],
Guo et al. [43] iteratively propagated the initial saliency map,
which is produced by multiplication, to generate the final
saliency map. Considering the quality of the depth map,
Cong et al. [44] proposed a measure to evaluate the reliability
of the depth map and used it to combine the two predictions.
Meanwhile, for middle fusion [53], [70], [71], [72], [73]
which adopts a two-stream structure to convert cross-modal
features and fuse cross-level features, Fan et al. [53] used
a gate mechanism to filter out the low-quality depth maps
explicitly. Li er al. [72] proposed to fuse high-level RGB and
depth features interactively and adaptively, discriminate the
cross-modal features from different sources, and enhance RGB
features with depth features at each level. Chen er al. [73]
integrated a depth quality-aware subnetwork into the classic
bi-stream structure, assigning the weight of the depth feature
before conducting the fusion. Though these methods gain
tremendous achievements in performance, they still encounter
problems of incomplete feature fusion.

Most existing fusion-based RGB-D SOD methods mainly
adopt depth clues as supplements to assist the RGB branch
since RGB and depth might play a disparate role in dif-
ferent scenes, e.g., clear depth and complex RGB vs. clear
RGB and fuzzy depth. Thus, apart from devising elabo-
rate fusion approaches to merge them, it’s also necessary
to take the two modalities individually, that is, ‘modality-
aware’. Zhai et al. [70] have presented a bifurcated backbone
strategy network. In this work, the proposed network fol-
lows a bifurcated backbone strategy to recombine multi-level

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

features into teacher and student features and integrate RGB
and depth modalities in a complementary manner. Specifi-
cally, the authors have proposed a depth-enhanced module
to excavate informative depth cues from the channel and
spatial views, achieving significant performance gain. Also,
Wang et al. [46] have proposed a simple yet effective method
to learn discriminative and modality-specific features for RGB
and depth and explicitly extract useful, consistent information
from them. Also, regarding the cross-modality consistency,
the authors have calculated the correlations of every pixel
pair from RGB (RGB correlation) or depth inputs (depth
correlation). Recently, Zhou et al. [74] have devised a novel
specificity-preserving network that explores shared informa-
tion and modality-specific properties. Given the methodology
innovation, the authors have utilized two modality-specific
networks and a shared learning network to generate individual
and shared saliency maps, yielding better segmentation results
by a cross-enhanced integration and a multi-modal feature
aggregation operation.

However, these modality-unaware or modality-near-aware
methods focus more on the modality-specific properties
regarding cross-level or cross-modality fusion in the encoding
phase, which might neglect that the decoding phase is required
to be modality-aware. Based on this insight, we propose a
modality-aware decoder to complete the whole training phase
of the encoder-decoder.

B. Attention Mechanism

Attention mechanisms [63], [75], [76], [77], [78] were
introduced into computer vision to imitate the aspect of the
human visual system. Such an attention mechanism can be
regarded as a dynamic weight adjustment process based on
features of the input image.

Kuen et al. [79] firstly introduced an attention mechanism
to salient object detection tasks. They used spatial trans-
former and recurrent network units to iteratively attend to
selected image sub-regions to perform saliency refinement
progressively and learn context-aware features from past iter-
ations to enhance saliency refinement in future iterations.
Zhai et al. [70] proposed a depth-enhanced module consist-
ing of sequential channel attention and spatial attention to
excavating informative parts of depth cues from the channel
and spatial views. Liu er al. [80] integrated the self-attention
and each other’s attention to propagate long-range contex-
tual dependencies to incorporate multi-modal information to
learn attention and propagate contexts more accurately and
selection attention to weight the newly added attention term.
Li et al. [81] proposed an alternate interaction unit composed
of several channel attention and spatial attention operations
to filter distracters’ in-depth features. Then the purified depth
features were exploited to enhance RGB features in turn.

Meanwhile, as is different from [82] employing depth infor-
mation as an error-weighted map to correct the segmentation
process, we utilize integrated information as a weighting
vector to guide the following fusion processing procedures.
We can learn the modal-level relationships between the two
modalities by employing modality-aware dynamic fusion.
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The overall method pipeline, where the modality-aware decoder (MaD) is the major highlight of this paper. The proposed MaD targets at learning

the relationship between different modalities, which can promote the later multi-level RGB-D fusion process by letting the network to be aware whether a
fused RGB-D feature channel is helpful to the current salient object detection (SOD) task.

C. Graph Neural Network

A GNN can be viewed as a message-passing algorithm,
where representations for nodes are iteratively computed con-
ditioned on their neighboring nodes through a differentiable
aggregation function. Xia and Gao [83] proposed a dense
graph convolution to enhance the local context information
of joints, and spatial and temporal attention modules are
used to adapt the intermediate feature maps. Xu et al. [84]
constructed a super-pixel level spatiotemporal graph among
multiple frame-pairs and imported graph data into the
devised multi-stream attention-aware GCN. Luo et al. [85]
proposed to distill and reason the mutual benefits between
these RGB data and depth data sources through cascade
graphs. Jiang et al. [86] propagated information across mul-
tiple graphs and obtained a consistent representation and
learning by integrating the information of multiple graphs
simultaneously.

Unlike all the above methods, our MaD introduces a feature
weighting strategy to guide feature fusion and yield purified
all-sided features given cross-modal and cross-level.

III. PROPOSED METHOD
A. Method Overview

Fig. 4 shows the overall pipeline of our approach, which
mainly includes two parts, illustrated from left to right: 1) a
mid-fusion encoder supported by Depth Transfer Module
(DTM), and 2) a novel Modality-aware Decoder (MaD) con-
sisting of N sequential Modality-aware Fusions (MaF). The
part 1) takes two different modalities (i.e., RGB and D) as
input to perform mid-level saliency dense fusion, where the
DTM narrows the feature gap between different modalities and
serves as an intermediate modality. Technical details regarding
part 1), which embeds RGB and D to a uniform feature space,
will be provided in Sec. III-B. The part 2), also the highlight
of this paper, targets a learning modality-aware relationship to
guide the multi-scale and multi-level feature collection, which,
compared with the conventional encoders (e.g., [72], [73]), can
achieve better complementary RGB-D fusion. And this part
will be detailed in Sec. III-C.

fdl—C A = X)— sa —X)

DTMy; DTM;

r _’fdlr
fr1—>@—> cA —»f;z—» sA —.99@ fér_w— e

@ Concatenation ® Multiplication @ Addition
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Fig. 5. Detailed architecture of depth transfer module (DTM). CA: channel
attention; SA: spatial attention.

B. Mid-Level RGB-D Fusion via DTM

In general, when performing RGB-D saliency fusion, a vital
issue is that low-quality D — a widespread phenomenon in
RGB-D images, could bring noises or erroneous interruptions
to the fusion process resulting in poor salient object detection
(SOD) results. Therefore, instead of performing complete
dense RGB-D fusion at a time, the encoder shall use D to
complement RGB conservatively, i.e., those D regions which
contradict their RGB counterparts should be temporally omit-
ted. As such, we propose the Depth Transfer Module (DTM),
which consists of multiple multiplicative-based fusion oper-
ations to compress those contradicted RGB-D regions. The
proposed DTM targets two objectives: 1) mining high-quality
and practical D, and 2) using them to promote their RGB
counterparts; the corresponding technical details have been
shown in Fig. 5.

We use fri / fj to represent features derived from the
i-th layer of RGB/D encoder. DTM mainly consists of two
streams, i.e., the D stream (black arrows) and the fused RGB-D
stream (red arrows). Each stream performs multiplicative
operation-based feature enhancing in advance, e.g., residual
operations, spatial- and channel-wise attentions. Both streams
will be combined via parallel addition and multiplicative
operations. Notice that the multiplicative operation in the last
parallel fusion stage could effectively compress inconsistencies
between RGB and D, which can be very effective in mining
high-quality and practical D. Both spatial-wise attention (SA)
and channel-wise attention (CA) adopted in DTM follow the
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typical ways, which can be respectively represented as:

CA(f) = moc(f, MLP[GMPC(f)]), 1)

where f denotes the input feature, GMP, is the global max
pooling operation over the input feature slice, MLP stands for
a two-layer perception, and moc(:, -) performs channel-wise
multiplication between its input;

SA(f) = ewm ( £, Conv3 [GMPS( f)]), )

GMP; is the pixel-wise global max-pooling over the entire
input feature tensor, Conv3 is a 3 x 3 convolution, and
ewm(-, -) performs element-wise multiplication between input.

Notice that, as shown in Fig. 4, there are a total of 5 DTMs
adopted in the mid-level fusion process, where each DTM
correlates to an individual encoder level. Clearly, such cascade
DTMs have two different inputs, where Fig. 5 illustrates the
difference, i.e., the input of DTMy; includes both f; and £},
yet the input of DTMy;; consists of f; and fér, where fc;.r is
the output of DTMy,;_1;. Hence, the output of DTM can be
represented as:

, DTM{i}(fdl’ fr') ifi=1
fiy = o 3)
DTy (£, £i7') if i =12,3,4,5).

Here we take the 3rd DTM for instance, and its inside
dataflow can be briefed as:

DTM3,(f3, f2) = Convl [C(Fj +F2F® Ffr)},

F2 = SA(CA(f2) x f2) x (CA(f2) x f2),
Fj = SA(CA(S) x f7) x (CAD x f1).
“)

where f2 is the output of DTM{y}, and Convl stands for a
1 x 1 convolution. Next, each output of the cascade DTMs,
i.e., the high-quality fjr, will be used to promote features
embedded in the RGB decoder via addition operation.

By performing the abovementioned procedure, we have
decoupled the RGB-D saliency fusion process into three indi-
vidual parts, i.e., f é, f dir, and f!, which respectively stand for
1) raw D features, 2) consistency degree between RGB and D,
and 3) RGB features conservatively enhanced by D. Though
the RGB features have been conservatively enhanced, this
fusion process is still modality-unaware, and some valuable
D currently conflicting with RGB are still embedded in f;
and f ér. Thus, in the following subsection, we will introduce
a feasible way to model the relationship between different
modalities, aiming to achieve modality-aware RGB-D fusion,
which is critical for obtaining better complementary fusion
status between RGB and D.

C. Modality-aware Decoder (MaD)

Most of the existing cross-modal fusion methods [87], [88],
[89], [90] follow the conventional selective fusion methodol-
ogy, where their fusion processes assume that RGB and D

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

are equally helpful towards the SOD task, and the balances
between RGB and D are online learned by their network
under the guidance of the given learning objective. Such a
learning process is very ‘slack’ and modality-unaware. Yet,
the fact is that the optimal RGB-D complementary status
is usually determined by multiple modality-related aspects,
e.g., RGB scene complexity, and D quality. Consequently,
achieving an optimal balance between RGB and D might
be tough without considering such objective aspects. Thus,
we present the MaD, composed of N Modality-aware Fusion
modules (MaF), which can collect multi-scale and multi-level
features in a modality-aware way. As is shown in the right part
of Fig. 4, MaF mainly consists of two parts: Modality-wise
Reasoning and Level-wise Reasoning. The primary objective
of these two parts is to stay modality-aware when performing
multi-level feature collection. Both of Modality-wise Rea-
soning and Level-wise Reasoning include three parts, i.e.,
Modality Relationship Module (MRM), Feature Embedding
(FE), Semantic Fusion (SF)/Detail Fusion (DF).

The relationships between different modalities can be
automatically formulated using MRM by performing 1D con-
volution over a modality graph that contains three nodes, i.e.,
G, D, and F, which respectively represent RGB modality,
D modality, and an additional in-between modality, and the
technical details of this part will be provided in Sec. III-C.1.

The rationale of Level-wise Reasoning is quite similar
to that of Modality-wise Reasoning. The significant differ-
ence between them is that Modality-wise Reasoning directly
takes the outputs of the encoder as input (ie., f;, fjr,
and frs). In contrast, the input of Level-wise Reasoning is
the output of Modality-wise Reasoning, where the learned
modality relationship guides the deep semantic feature fusion
via MaF. Specificallyy, MRM learns relationships between
different modalities, and FE projects the previously learned
modality relationship from the graph interaction space back
to the spatial coordinate space. Thus the embedded modality
relationship can be used to weight multi-level features (i.e., r;).
SF and DF take both the output of FE and r; as input to achieve
modality-aware multi-scale/level feature collection.

1) Modality Relationship Module (MRM): To dynamically
learn the relationships between different modalities, we pro-
pose the MRM. As seen in Fig. 4, MRM performs graph
convolution over three nodes, i.e., G, D, and F, where the
in-between modality F, the output of DTM, is very slack,
and it can well reflect the harmony degree between RGB and
D — could be very useful to determine their complementary
status. By formulating such a relationship and using it to guide
the subsequential multi-level decoding process, we can achieve
better complementary status between RGB and D regarding
the given SOD task.

In our research community, multiple graph convolutions
exist to learn the relationships between graph nodes, e.g., the
classic GloRe [91]. In our MRM, we regard the output of the
last encoder layers as the graph nodes, i.e., de, f ;r, and f,s,
because such outputs are all semantics that are very helpful
in perceiving the relationship between different modalities.
Meanwhile, since fds, f[?r, and er have already been projected
into a uniform feature space via the encoder, their relationship

Authorized licensed use limited to: China University of Petroleum. Downloaded on October 30,2024 at 06:32:21 UTC from IEEE Xplore. Restrictions apply.
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BConv: Conv1l + BatchNormalization + ReLU ASPP: Atrous Spatial Pyramid Pooling

Auxiliary Information

Fig. 7. Architecture of Feature Embedding (FE).

can be simply learned by using two sequential 1D convolu-
tions, and MRM can be detailed as:

{R1, Ry, R3} < MRM(f], f2., f)

= Conle[Conle[C(fj, fdsr, frs)]], @)

where {Rp, R2, Rz} denote the outputs of MRM, which
respectively are the embedded modality-aware features; C is
the typical feature concatenation operation, and ConvID is
a 1D convolution. MRM projects its input into an interactive
space for graph nodes, and the relationships between different
modalities have been implicitly embedded into it. Notice that
a more fancy graph convolution (e.g., [91], [92], [93]) could
further promote such features’ relationship embedding, yet,
to focus on the main topic of this paper, we shall omit other
choices.

After obtaining {R;, R2, R3}, we use them as the dynamic
fusion weights to drive the modality-aware fusion (MaF),
where {Rp, Ry, R3} are used to guide multi-level feature
collection towards the side output of the RGB encoder, i.e., r;
demonstrated in Fig. 4. Both method rationale and technical
details of MaF will be provided in the next subsection.

2) Feature Embedding (FE): The primary target of FE
is to perform feature projection, i.e., {R1, R2, R3} — fe,
where f, is the learned modality relationship projected back
in coordinate space, and thus f, can be used to weight the
subsequential feature collection. Intuitively, all {Ri, Ry, R3}
can be simply combined via feature concatenation. However,
since {R1, Rz, R3} respectively correlate to different modali-
ties with varying importance towards the SOD task, we shall
treat Ry as an auxiliary part to complement R; and R3 in a
cascade way.

We have demonstrated the technical details of FE in Fig. 7,
where the cascaded fusion follows a top-down direction.
We also apply atrous spatial pyramid pooling (ASPP) to each

stream, which enables multi-scale feature representation in a
very efficient way. The dataflow of FE can be formulated as:

fe = BConV[C(BConv[C(Rl, Ry x ﬁz)], Ry x R3)],
R; = BConv[ASPP(R))]. i€ (12,3}, ©6)

where C denotes the feature concatenation operation, BConv
sequentially performs 3x3 convolution, batch normalization,
and ReLU operations, f, is the output of FE sharing an
identical size with R;.

This way, the previously learned relationships between
different modalities have been embedded in f,. Thus we can
use it to guide multi-level feature collection, i.e., SF, and DF,
which will be detailed in the next subsections.

3) Semantic Fusion (SF) and Detail Fusion (DF): We
have demonstrated the technical details of both SF and DF in
Fig. 6. SF takes f,, the embedded modality relationship, as its
input, and a sequential of MaxPooling, SoftMax, and Convl
operations are applied to convert f, into useable attention
tensors with desired sizes, i.e., f,f).

Meanwhile, the side outputs of the RGB stream illustrated in
Fig. 4, i.e., r;i, have included partial D information. Thus, given
a conventional saliency decoder (e.g., CPD [94]), one can
collect them in a multi-level manner to formulate final saliency
maps. The limitation of such a modality-unaware decoder has
been mentioned multiple times before. In sharp contrast to
the conventional decoders, the f, is additionally available in
our approach, which can make the decoding process modality-
aware.

In view of the SOD task, correctly localizing salient
objects is usually more critical than achieving boundary salient
object segmentation, and features derived in deeper layers
are more helpful than those in shallower layers towards this
aspect. Therefore, as shown in SF of Fig. 6, we respec-
tively apply fi as attentions on deeper semantic features
r3, r4, r5, where modality-aware high-level semantic features
(i.e., fw , 52, fu3)3) can be obtained accordingly. This process
can be detailed as the following equation, in which we take
£ for instance.

=m0 fl, fi

where © denotes the broadcast multiplication, Convl is
a 1 x 1 convolution which resizes its input to any wanted
size; MaP is the typical max-pooling operation, and softmax
operation ensures that f,) can be used as an attention tensor.

= Convl [SoftMax (MaP( fe))], 7
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TABLE I

QUANTITATIVE EVALUATION OF MAJOR COMPONENTS USED IN OUR APPROACH, WHERE
REGARDING MARKS FROM @ TO @

1 “USING’, X: “WITHOUT USING’. THE FULL DESCRIPTIONS
CAN BE FOUND IN SEC. IV-E

Major Components Datasets and Quantitative Metrics
Backbone MRM Fusion Hyper Settings NJUD NLPR LFSD SSD
B DTM| MR LR FE SF/DF LwR | IN En3 En5 | SmT FmT Em! MAE!| SmT Fm?T Em? MAE!| SmT FmT Em! MAE!| SmT Fm?T Em! MAE!
a 1 X X X X X X X X X 880 .820 876 .063 | .891 883 .877 .035 | .840 847 849 079 | .834 778 852 .068
2 X X X X X X X X 902 851 888 .049 | 911 885 .891 .029 | .855 866 .869 .066 | .847 804 879 .060
3 X X 919 901 912 .040 [ 930 .899 940 .024 | 880 .875 899 .053 | 870 .848 905 .046
®' 4 X X 918 899 911 .041 | 931 898 938 .024 | 879 876 .894 054 | .865 843 902 .048
5 X X X 908 875 909 .047 | 923 884 925 029 | .876 869 .859 .058 | .862 .841 900 .052
6 X X 909 875 913 045 | 915 888 934 027 | .861 870 .886 .062 | .860 .839 897 .052
7 X X 915 890 919 .041 | 922 891 939 .024 | 870 879 .892 .053 | .864 .843 901 .050
8 X X X 917 899 924 041 [ 924 890 942 026 | .875 .880 900 .055 | 868 .848 903  .047
@+ 9 X X 916 898 925 040 | 926 .893 947 027 | 879 874 898 .055 | .861 844 898  .049
LIO X 919 900 928 .039 | 928 897 950 .025 | .881 875 .899 .053 | .865 .847 902 .047
11 X 921 903 930 .037 | 933 901 .955 .022 | .884 .877 .901 .051 | .872 .850 .907 .045

B: baseline model
DTM: Depth Transfer Module (Fig. 4)
MR: using MRM in Modality-wise Reasoning

LR: using MRM in Level-wise Reasoning
En3/En5: MRM takes the 3th/5th feature of the encoder as input
FE: Feature Embedding (Fig. 5)

SF/DF: Semantic Fusion/Detail Fusion (Fig. 6)
LwR: using Level-wise Reasoning (Fig. 3)
IN: sequentially iterate MaD N times

To achieve a multi-level feature collection, the rest of the
encoder’s side outputs (i.e., r1 and r7) should also be included.
Intuitively, both r; and r, can be simply combined with
the output of SF, e.g., ful)l. However, since ful)l, flﬁz, quP
are pretty redundant and their primary values are to localize
salient objects, it could lead to incomplete SOD results if
such redundant feature responses are not removed. As such,
we further explore the relationship between ful)l, uzjz’ 113)3,
an additional Level-wise Reasoning, which can filter such
redundant information.

As illustrated between SF and DF in Fig. 6, an additional
MRM has been applied over the output of SF, where all

ul}l, uz)z’ fu3,3 have been projected back to graph interaction
space again and latterly projected back to the coordinate space
via FE, ie., f; Our DF can be detailed as the following
equation, where we take the top line for instance:

M=rrof, 7= Convl[SoftMax(MaP(fg))],

fo = FE(MRM(f,!, 22, £32)). ®)

where © denotes the broadcast multiplication, the details of
FE and MRM can be found respectively in Sec. III-C.2 and
Eq. 5. We can achieve modality-aware and multi-level feature
collection using both SF and DF, and the MaF will be repeated
N times. As seen in Fig. 6, the output of the N-th MaF will be
directly fed to a saliency encoder (SD) to obtain final saliency
prediction. The technical details of SD will be given in the
next subsection.

D. Saliency Decoder (SD)

After repeating MaF N times, we can get three dynamic
fusion features, i.e., ful)l f£2 f£3 which have already been
embedded in cross-scale and cross-level modality relation-
ships. To produce the final saliency map, we propose the
SD. Instead of collecting by up-sampling multi-scale and
multi-level features as the typical encoder does, the pro-
posed SD shall only focus on: simultaneously combining
ful)l, fl%z fu3)3 and performing up-sampling. The architectural
detail of SD can be seen in the right part of Fig. 6.

IV. EXPERIMENTS
A. Datasets

We evaluate the effectiveness of our model on six widely
used public benchmark datasets, i.e., NJUD [95], NLPR [96],
SIP [53], STEREO [97], LFSD [98], and SSD [99]. NJUD [95]
includes 2,003 stereo image pairs with various resolutions.
Among these image pairs, 1,400 are used as the training set,
100 as the validation set, and the remaining as the testing
set. NLPR [96] consists of 1,000 images from 11 types of
indoor and outdoor scenes. Among them, 650 are used as
the training set, 50 as the validation set, and the remaining
300 as the testing set. SIP [53] consists of 1,000 high-
resolution images that cover diverse real-world scenes from
various viewpoints, poses, occlusions, illuminations, and back-
grounds. STEREO [97] has 797 stereoscopic images. These
images are mainly collected from the Internet and 3D movies.
Depth images are generated by leveraging an optical method.
LFSD [98] is a relatively small dataset for testing, which
contains 100 images with depth information captured via a
Lytro light field camera and manually labeled ground truths.
The resolutions of these images are relatively small. SSD [99]
has 80 images picked up from stereo movies.

B. Evaluation Matrices

Three metrics are adopted for quantitative evaluation,
including S-measure (Sm) [100], F-measure (Fm) [101],
E-measure (Em) [102], and mean absolute error (MAE).
Specifically, S-measure is utilized to solve the problem of
structural measurement from the perspective of region-aware
and object-aware. F-measure offers a unified solution to
evaluating non-binary and binary maps. E-measure combines
local pixel values with the image-level mean value to jointly
evaluate the similarity between the prediction and the ground
truth. The MAE denotes the average pixel-wise difference
between saliency maps and the ground truth.

C. Implementation Details

We implemented MaD by PyTorch with an NVIDIA
GeForce 2080 GPU. Following [35], [64], the proposed MaD
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TABLE I

QUANTITATIVE COMPARISON WITH CURRENT SOTA MODELS ON SiX WIDELY-USED DATASETS IN TERMS OF S-MEASURE (SM), F-MEASURE (FM),
E-MEASURE (EM), AND MEAN ABSOLUTE ERROR (MAE). ¥ MEANS THAT THE LARGER THE NUMERICAL VALUE, THE BETTER THE MODEL,

WHILE |, MEANS THE OPPOSITE. THE TOP-3 RESULTS ARE RESPECTIVELY MARKED IN RED, AND BLUE
Sct|Metric] PCA PDNet CPFP DMRA SJMAA2dele D3Net DANet ICNet CoNet UCNet cmMS CMW ATSA BBSNet BTSNet DCF SPNet  ASIF [ Ours
2018 2018 2019 2019 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2021 2021 2021 2021 | 2022
SmT | .877 .883 .878 .886 .894 871 892 899 894 .895 .897 900 .903 901 919 021 919 889 | 021
g FmT | .844 832 877 .872 889 .874 863  .871 843 872 895 897  .880  .893 899 899 888 | .903
2| Emf| 896 890 906 908 930 .897 913 926 913 915 922 923 921 919 926 920 .920 .925 | .930
MAEL | 059 062 .053 051 .053 .051 047 045 .052 046 .043 044 046 .040 038 039  .036  .047
SmT| 873 835 888 .899 915 898 .902 920 923 .908 920 915 917 907 926 925 926 906 | 933
Z | Fmt| 794 740 822 855 902 878 857 875 908  .846 896 872 876  .878 898 .899 898  .888
2 | Emt| 916 876 924 942 953 945 943 945 952 945 953 949 941 945 949 958 957 944
MAEL | 044 064 036 031 030 .028 .030 .027 .028 .031 .025 .027 .029 .028 .028 021 .023 .024 .030
SmT| 842 783 850 806 .872 829 860 .875 854 .858 875 872 .868 864 874 882 880 857 | 884
o | Fmt| 824 620 818 819 849 .85 835 855 791  .842 877 851 873 874 872 875 859 | 877
® | Em?| .898 802 899 863 911 .892  .902 900 913 913 907 909 912 915 918 912 908 .896 | .920
MAEL| 071 166 .064 .085 .058 .070  .063 070 063 051 058 062 .058 056 .052 .055 .055 .061 | .051
O | SmT| 880 .874  .871 886 890 879 885  .892  .891 908 903 895 902  .897 905 904 905 .868 | .910
B | FmT| 845 833 827 .868 .882 874 855 881 .847 904 879 867 884 886  .891 .895 .893  .893 | .892
W Emt| 905 903 897 920 932 915 920 930 925 922 927 917 919 927 935 926 924 918 | 939
o [MAEL| .061 064 054 047 051 .044 046 .048 .046  .040 043 044 041 041 040 049 | .037
SmT | 800 .845 828 .847 837 834 825 845 848 862 .864 - 865 856 867 862 867 814 | 867
Q| Fmt| 794 824 813 849 835 832 810 846 861 859 864 - 871 850 860 860 .858  .858
W | EmT| 846 872  .867 .873 - .862 - .887 - 891 .896 - - .889 .896 886 .890 - 901
MAEL | 112 109  .088 075 .094 .077 .095 .083 .075 071 .066 - 067 064 074 070 062 089 | 059
SmT | 843 802 807 .857 .868 - 847 - - - - - - - - 855 .82 857
a | Fmt| 786 716 725 821 - 815 - - - - - - - 832 - 826 814 834
B Emr| 883 813 832 892 909 - 888 - - - - - - - 904 - 898 890  .884
MAEL | .064 115 082 .058  .052 - 058 - - - - - - - - 053 053 .056

is trained on a composite training set, including 1,400 samples
from NJUD [95] dataset and 650 samples from NLPR [96]
dataset, and the input is resized to 352 x 352 resolution. The
initial parameters of the feature encoding network are adopted
from the pre-trained ResNet50 model [51]. The learning rate
is set to le-4 for the Adam optimizer [103] and is later
decayed by 10 at 60 epochs. We adopt cross-entropy loss for
supervision.

D. Comparison With State-of-the-Arts

To demonstrate the effectiveness of the proposed method,
we compare it with 19 state-of-the-art (SOTA) meth-
ods, ie., PCA18 [104], PDNetl9 [105], CPFP19 [106],
DMRA19 [40], S2MA20 [80], A2dele20 [107], D3Net21 [53],
DANet20 [108], ICNet20 [72], cmMS20 [109], CMWNet20
[110], CoNet20 [111], UCNet20 [52], ATSA20 [112],
BBSNet21 [70], BTSNet21 [64], DCF21 [113], SPNet21 [74],
and ASIF21 [68].

The compared results are either reproduced by the released
codes or saliency maps provided by authors, and the quanti-
tative comparison results are shown in Table. II. Our method
(see in Sec. III-C) performs the best on LFSD and NLPR
datasets and shows competitive performance on STEREO,
NJUD, and SIP datasets. More clearly, our method consistently
outperforms all other compared SOTA methods in terms of the
Fm metric. In the STEREO set, our method outperforms other
competitors in terms of the Sm metric, e.g., 0.910 (ours) v.s.
0.909 (BBSNet). In the LFSD set, our method improves 3.3%
in terms of the Fm metric.

Fig. 8 further shows several visual comparisons of MaD
with the latest representative models. From top to bottom,
in rows #1, #2, and #5, we show three examples when image
scenes with poor depths. Our method produces more reliable

¥
11

RGB  Depth GT Ours UCNet A2dele DMRA CoNet D3Net

Fig. 8. Visual comparison between our method and several most represen-
tative SOTA models.

results, while other RGB-D saliency detection models fail
to locate salient objects in images with low-quality depth.
In row #7, we show an example with low contrast RGB, where
it is challenging to locate all salient objects accurately. Our
method locates all salient objects and segments them more
accurately, generating sharper edges than other approaches.
Moreover, in row #4 and row #8, both RGB and depth are
of high quality, and our method generates the best result than
any other SOTAs. We also show an example under complex
conditions with fine-grained details in row #3 and row #6.
Some approaches fail to complete detection, but our method
can still perform well.

E. Component Evaluation

To validate the effectiveness of our method, we have con-
ducted an extensive component evaluation, and the results have
been shown in Table I. To enable a successful code running,
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TABLE IIT
ABLATION STUDIES TOWARDS THE EFFECTIVENESS OF DTM AND MRM. THE BEST RESULTS ARE MARKED BY BOLD FONT
Datasets NJUD NLPR SIP STEREO LFSD SSD
Metrics | SmT Fmt Em?T MAE] SmT Fm? Emt MAE|Smt Fmf Em? MAE]Sm?T Fmt Emf MAE|SmT Fm?T Emt MAE|Smt Fmt EmT MAE
w/o DTM |.900 .882 923 .053 |.920 .891 .949 .027 |.850 .847 913 .079 |.889 .856 .929 .024 |.852 .850 .854 .080 |.865 .840 .897 .050
DTMft |.912 911 927 .042 |.927 895 953 .025 |.865 .866 918 .066 |.900 935 .875 .036 |.863 .858 .859 .075 |.869 .844 903 .047
DTMft |.910 .899 926 .047 |.923 894 952 .024 |.859 .858 916 .071 |.895 .868 .933 .031 |.861 .855 .857 .077 |.868 .842 .901 .048
wDTM |[.921 903 .930 .037 |.933 .901 .955 .022 |.884 .877 .920 .051 |.910 .892 .939 .037 |.867 .862 .901 .059 |.872 .850 .907 .045
w/o MRM | 908 .875 909 .047 |.923 884 .925 .029 |.876 .860 .908 .057 |.902 .881 .930 .042 |.860 .843 .889 .068 |.862 .841 .900 .052
MUL 914 893 924 040 |.930 .897 951 .023 |.882 .871 .917 .054 |.908 .888 .936 .038 |.864 .858 .900 .060 |.858 .847 905 .048
CAT 912 890 .921 .044 |.927 .891 947 .025 |.879 .863 915 .055 |.905 .883 932 .041 |.862 .850 .889 .064 |.869 .842 902 .050
wMRM [.921 903 .930 .037 |.933 .901 .955 .022 |.884 .877 .920 .051 |.910 .892 939 .037 |.867 .862 .901 .059 |.872 .850 .907 .045

we have replaced those key components which need to be
verified by simple operations, e.g., the proposed MRM has
been replaced by simple feature concatenation and convo-
lution. We treat this replaced model as a baseline, and the
qualitative result has been shown in the 1st column denoted
by ‘B’.

Denoted by mark (D), the effectiveness of the proposed
DTM (Sec. III-B) can be observed by comparing line 1 and
line 2, where the baseline model equipped with DTM can
achieve persistent performance gain, e.g., 0.820 vs. 0.851 in
terms of Fm in NJUD set.

Marked by @, i.e., lines 3-5 and 11, we can easily verify
the effectiveness of the proposed MRM (Sec. I1I-C.1). In these
cases, we have removed MRM from either modality-wise rea-
soning (denoted by MR), level-wise reasoning (characterized
by LR), or both. Comparing models partially using (lines 3-
4), the model using MRM (line 11) can steadily improve
overall performance. Furthermore, the model that removed
MRM (line 5) performs the worst. Notice that the model using
MRM in Modality-wise Reasoning is slightly better than the
model using MRM in Level-wise Reasoning, e.g., the Fm
metric has been improved from 0.899 to 0.901 in the NJUD
set, showing the importance of the proposed Modality-wise
Reasoning.

As is indicated by mark @, lines 6-7 can well
reflect the effectiveness of FE (Sec. III-C.1) and SF/DF
(Sec. II-C.1) and the necessity of using Level-wise Rea-
soning can be confirmed by line 8. Compared with our
complete model in line 11, both models either without using
FE or SF/DF perform worse, where the Sm metric in the
NLPR set has decreased respectively from 0.901—0.888 and
0.901—0.891. The reason is also quite apparent, i.e., FE can
integrate different modality features and obtain more delicate
regions of interest, and SF/DF can achieve modality-aware and
multi-level feature collection. Also, compared with line 11,
line 8 illustrates the performance of a model which removes
the Level-wise Reasoning, and, as expected, the performance
drops significantly.

Highlighted by mark @), we have verified the necessity of
the proposed N-step MaF reasoning (line 9) and the effective-
ness of using the last layer of the encoder as MaD’s input
(line 10). As shown in line 9 (we set the default iteration time
as 3, and the corresponding ablation study will be conducted
in Sec. IV-E4), repeating MaF multiple times could improve
performance as expected. Also, as denoted by line 10, the
advantage of using the 5th level features against the 3rd level

features as the MaD’s input can be easily observed, e.g., 0.928
vs. 0.933 in terms of Sm in the NLPR set. The reason is that the
5th level features contain more semantic information, which
can be helpful to precisely locate salient objects. In contrast,
the 3rd level features have redundant information, hindering
modality-aware fusion.

E Ablation Studies

We have provided comprehensive ablation studies to fur-
ther evaluate the contribution of each key component in
our method. Specifically, we investigate 1) the importance
of DTM, 2) the effectiveness of MRM, 3) the influence
of iterations of MaD, and 4) the number of sequential 1D
convolutions. We change one component each time and retrain
variants with the same hyperparameters and training settings.

1) Importance of DTM: To validate the effectiveness of
the proposed DTM (Sec. III-B), we set up three experiments
with the same parameter settings. Specifically, ‘DTM{’ means
removing all data flows between sequential DTMs in hori-
zontal direction (i.e., f in Fig. 4), while ‘DTM{’ denotes
removing all vertical data flows which output depth informa-
tion to RGB stream. We use ‘w/o DTM’ to represent without
using DTM. As shown in Table III, when no interaction
exists between RGB and D branches, the model performs the
worst. Also, though using only partial interactions between
DTM units can achieve some performance gain (about 2.6%
improvement in terms of Sm metric), the complete interaction
version has exhibited an undeniable advantage, e.g., the Fm
metric can be improved from 0.875 to 0.892 and 0.868 to
0.892 respectively in the STEREO set. Such comparative
experiments show that the DTM is crucial for downstream
Modality-aware Reasoning. Our proposed DTM can mine
high-quality and practical D and use them to promote their
RGB counterparts.

2) Effectiveness of MRM: In the proposed framework, the
MRM (Sec. ITII-C.1) is adopted to learn inter-modality relation-
ships, where the learned relationship is used to guide the fusion
process between RGB and D. To validate its effectiveness,
we have tried to delete this MRM (this model has also been
reported in line 5 of Table I), denoted as ‘w/o MRM’.

Besides, we have also compared two other plain feature
fusion strategies with our MRM, i.e., performing inter modal-
ity fusion via either element-wise multiplication (denoted by
‘MUL’) or simple concatenation with convolution (denoted by
‘CAT’). As shown in Table III, comparing *w/o MRM’ with
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TABLE IV
QUANTITATIVE RESULTS OF THE NUMBER OF MAD ITERATIONS (N). THE BEST RESULT IS HIGHLIGHTED BY BOLD FONT
Set NJUD NLPR SIP STEREO LFSD SSD
Metric | SmT Fm? Emft MAE{Sm?T Fm?T Em? MAE]|Smt Fmt Em? MAE|Sm? FmfT Emf MAE|Smt Fmt Em? MAE]Sm?T Fmt Emf MAE
N=1 [.918 .899 924 038 |.932 .898 948 .024 |.882 .873 .909 .053 |.907 .890 .928 .039 |.863 .859 .893 .070 |.864 .838 .901 .05l
N=2 | 919 901 926 .036 |.932 .899 .949 .024 |.882 .875 912 .052 |.908 .892 931 .038 [.866 .860 .896 .070 |.867 .841 .902 .048
N=3 [.921 .903 .930 .037 |.933 .901 .955 .022 |.884 .877 .920 .051 |.910 .892 .939 .037 |.867 .862 .901 .059 |.872 .850 .907 .045
N=4 | 919 902 .927 .037 |.931 .897 952 .023 |.883 .876 915 .052 |.907 .891 .936 .038 [.866 .861 .899 .063 |.870 .845 .905 .047
TABLE V
ABLATION STUDY REGARDING THE NUMBER (i) OF SEQUENTIAL 1D CONVOLUTIONS (SEC. III-C.1)
Set NJUD NLPR SIP STEREO LFSD SSD
Metric | SmT Fm? Emft MAE{Sm?T Fm?T Em?T MAE]Smt Fmt Em?T MAE|SmT FmfT Emf MAE}|Smt Fmt Em? MAE]Sm?T Fmf Emf MAE

i=/ 1.921 .903 930 .037 |.933 901 .955 .022 |.884 .877 .920 .051 |.910 .892 .939 .037 |.867 .862 .901 .059 |.872 .850 .907 .045
i=2 1919 902 928 .036 |[.930 .903 952 .023 |.882 .876 .927 .052 |.909 .892 936 .036 |.866 .860 .898 .060 |.868 .849 .903 .046
i=3 |.918 .898 925 .037 |.928 .898 949 .025 |.881 .875 925 .053 |.907 .890 .934 .039 |.863 .857 .895 .061 |.867 .848 .905 .048
i=4 |.916 900 .921 .039 |.927 .897 946 .025 |.878 872 921 .055 |.903 876 933 .040 |.860 .855 .893 .063 |.864 .845 .901 .051

w MRM

w/o MRM

Fig. 9. Qualitative demonstration of modality relationship module (MRM).

our full model (‘w MRM’), there is an average 2% margin
in terms of the Fm metric. Comparing ‘MUL’ and ‘CAT’
with our full model, we can see that our MRM outperforms
them clearly, e.g., 0.914 vs. 0.921 and 0.912 vs. 0.921 in
terms of Sm over NLPR set. The results demonstrate the
effectiveness of extracting high-level feature representations
using graph relation among different modalities. The reason is
that graph structure can obtain a harmonious degree between
different modalities to learn the complementary relationships.
For a better reading, we have also provided some qualitative
demonstrations in Fig. 9.

3) Validity of Modality-Aware Fusion (MaF): To fur-
ther verify the advantages of the proposed “modality-aware
fusion”, we have conducted a quantitative test to see if the
claimed new fusion brings our performance gain. In the exper-
iment, we propose to investigate the absolute performance
gain obtained by the fusion module. Our rationale is that a
more powerful fusion shall gain more performance against
low-level saliency. Here we have selected 3 most represen-
tative SOTA models (e.g., SPNet21 [74], ATSA20 [112], and
CMW?20 [110]), where their RGB saliency and D saliency

are respectively obtained by averaging each sub-stream’s side-
output quantitative scores. The results can be seen in Table VI.
As shown in the table, both low-level saliency (RGB
saliency and D saliency) cues in our model have no clear
advantages over other models. However, as suggested by the
“Numeric Gain”, our fusion process has performed the best.
Notice that, since our fusion has solely focused on the learning
modality relationships with a much simpler implementation,
it is reasonable to infer that the proposed modality-aware
fusion is very effective. Besides, the Numeric Gains achieved
by the other three compared models are pretty limited because
these methods have failed to be completely modality-aware.

4) Influence of MaD lIterations: We have conducted an
ablation study regarding the iterations N (Sec. III-C), and the
detailed results can be found in Table IV. Limited by GPU
storage, we only chose N = 1, 2, 3, 4, in which N = i means
to iterate the whole MaD for i times. As shown in Table IV,
the overall performance of our method is moderately sensitive
to the choice of N, in which the overall performance via
N = 3 exhibits the best performance in general, and explicit
performance degradation can be found when we assign N = 1.
Meanwhile, when assigning N to 4, the performance has also
decreased, e.g., 0.933 vs. 0.931 in terms of the Sm metric on
the NLPR set, and thus we set N = 3 as the optical choice to
strike the trade-off between accuracy and efficiency.

Further, we have included qualitative illustrations of the
modality-aware (ours) and modality-unware (S2MA [80])
method in the RGB-D fusion process, which can be seen
in Fig. 10. Expressly, we have provided the last three MaF
output results (because we adopt three MaFs in our network
to balance the efficiency and over-smoothing problem), e.g.,
MaF-1, MaF-2, and MaF-3 (the MaF-3 is utilized to produce
final saliency maps). And also, we have illustrated the last
three fusion processing results of S2ZMA, denoted by D1, D2,
and D3 (the D3 is utilized to produce final saliency maps).
As we can see, in almost all scenes of low contrast (row 1),
complex background (row 2), and simple objects (row 3), our
MaF-3 can obtain superior visual results. The main reason is
that the modality-unaware method has “equally” considered
depth and RGB for all image scenes. As a result, when one
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TABLE VI

QUANTITATIVE VERIFICATIONS TOWARDS THE ADVANTAGES OF BEING
COMPLETE MODALITY-AWARE. HERE WE COMPARE OUR METHOD
WITH THE OTHER 3 REPRESENTATIVE SOTA MODELS. ‘NUMBER
GAIN’ CAN BE COMPUTED BY: {FUSED_SAL—MAX(RGB_SAL,
DEPTH_SAL)}, WHERE RGB_SAL AND DEPTH_SAL ARE
THE LOW-LEVEL SALIENCY CUES, WHICH CAN BE
COMPUTED BY AVERAGING THE NUMERIC SCORES
OF SIDE-OUTPUTS RESPECTIVELY FROM RGB
BRANCH AND DEPTH BRANCH OF THE
CONSIDERED SOTA MODEL

SPNet21 [74] NJUD [95] STEREO [97] SIP [98]
Metrics || SmT Fmt MAE| | Sm? Fmft MAE| | Smt FmT MAE|
RGB_sal 0.901 0.885 0.042 | 0.908 0.890 0.041 |0.835 0.820 0.093
Depth_sal 0.858 0.834 0.064 | 0.735 0.695 0.120 |0.721 0.712 0.145
Fused_sal 0.920 0.899 0.036 | 0.905 0.893 0.040 |0.867 0.858 0.062
Numeric Gain || 0.019 0.014 -0.006 |-0.003 0.003 -0.001 0.032 0.038 -0.031
ATSA20 [112] NJUD [95] STEREO [97] SIP [98]
Metrics || SmT FmT MAE| | Sm? Fmt MAE] | SmT Fmf MAE|
RGB_sal 0.886 0.895 0.043 | 0.892 0.875 0.042 |0.834 0.839 0.069
Depth_sal 0.855 0.867 0.051 | 0.873 0.760 0.081 |0.821 0.817 0.085
Fused_sal 0.901 0.893 0.040 | 0.897 0.884 0.039 |0.864 0.873 0.058
Numeric Gain || 0.015 -0.002 -0.003 | 0.005 0.009 -0.003 0.030 0.034 -0.011
CMW20 [110] NJUD [95] STEREO [97] SIP [98]
Metrics || SmT Fmt MAE| | Sm? Fmft MAE| | Smt FmT MAE|
RGB_sal 0.907 0.872 0.053 | 0.904 0.862 0.049 |0.843 0.823 0.071
Depth_sal 0.873 0.855 0.057 | 0.863 0.820 0.058 |0.822 0.815 0.083
Fused_sal 0.903 0.880 0.046 | 0.902 0.867 0.044 |0.868 0.851 0.062
Numeric Gain || -0.004 0.008 -0.007 |-0.002 0.005 -0.005 0.025 0.028 -0.009
Ours NJUD [95] STEREO [97] SIP [98]
Metrics || Smt Fm? MAE| | SmT Fmt MAE| | Smt FmT MAE|
RGB_sal 0.896 0.884 0.046 | 0.903 0.880 0.046 |0.846 0.833 0.090
Depth_sal 0.842 0.851 0.069 | 0.749 0.703 0.099 |0.823 0.775 0.116
Fused_sal 0921 0.903 0.037 | 0.910 0.892 0.037 |0.884 0.877 0.051
Numeric Gain || 0.025 0.019 -0.009 | 0.007 0.012 -0.009 0.038 0.044 -0.039
TABLE VII

DETAILED AVERAGED TIME COST FOR A SINGLE IMAGE. THIS RESULT
WAS OBTAINED ON A PC WITH AN INTEL(R) XEON(R) CPU, NVIDIA
GTX2080 GPU (WITH 8G RAM) AND 32G RAM. THIS
EXPERIMENT WAS CARRIED OUT ON THE SSD SET

[ Main Steps | Seconds |
Key Comp. 1: Depth Transfer Module (Sec. ) 0.0003s
Key Comp. 2: Modality-aware Fusion X 3 (Sec. ) | 0.0172s

(1) Modality-wise Reasoning 0.0098s
MRM (Sec. ) 0.0065s

FE (Sec. ) 0.0031s

SF (Sec. ) 0.0002s

(2) Level-wise Reasoning 0.0074s
MRM (Sec. ) 0.0041s

FE (Sec. ) 0.0031s

SF (Sec. ) 0.0002s

Key Comp. 3: Saliency Decoder (Sec. ) 0.0008s
Total 0.0183s

or both of the two modalities are of poor quality, the one with
more inferior quality will bring a negative impact.

We have also included the computational cost of each
component in Table VII. We can see that the primary time
computation of the network lies in the Key Component 2 —
Modality-aware Fusion, which takes almost 95% of the total
time. Notice that each sub-part in Key Component 2 has a
reasonable computation cost.

5) Numbers of Sequential 1D Convolutions: To verify the
effectiveness of the adopted 1D Convolutions in the learn-

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE VIII

ABLATION STUDY ON OTHER RGB-D METHODS BY REPLACING
THE DECODING FUSION STRATEGIES WITH OUR
MODALITY-AWARE DECODER (MAD)

Dataset NJUD [95] STEREO [97] LFSD [98]
Metrics Smt Fmt MAE| | Smt Fmt MAE| | Smt Fmt MAE|
BBSNet [70] || 0.919 0.899 0.037 | 0.909 0.886 0.041 | 0.856 0.850 0.074
BBSNet+MaD || 0.925 0.910 0.035 | 0915 0.892 0.038 | 0.858 0.855 0.072
SPNet [74] [| 0.920 0.899 0.036 | 0.905 0.893 0.040 | 0.867 0.858 0.062
SPNet+MaD || 0.927 0.912 0.034 | 0917 0.906 0.036 | 0.872 0.867 0.059
DCEF [113] || 0.919 0901 0.039 | 0.904 0.895 0.041 | 0.862 0.860 0.060
DCF+MaD || 0.922 0.908 0.037 | 0.908 0.900 0.037 | 0.878 0.867 0.056

ing modality relationship (Sec. III-C.1), we have conducted
an extensive ablation study regarding the number of 1D
Convolutions from 1 group to 4 groups (two sequential 1D
Convolutions are regarded as a group, indicated by i). From
detailed results in Table. V we can see, with the increased
groups of 1D convolutions, the performance has declined, e.g.,
when increasing i from 1 to 4, the Sm metric in the NJUD
set has decreased from 0.921—0.916. The reason is quite
similar to the phenomenon in fully convolution layers — too
many sequential non-linear mappings could lead to the learned
model overfitting. Thus, we have chosen i = 1 as our default
setting.

6) Applications of MaD to Other RGB-D SOTA Models:
We have also tried to apply our method to other RGB-D
SOTA models, as shown in Table VIII. In this experiment,
we have newly replaced the decoding fusion strategies of
several other RGB-D methods (BBSNet [70], SPNet [74], and
DCF [113]) with our modality-aware decoder. We find that
the three SOTA methods equipped with our modality-aware
decoder can achieve better results, suggesting the relatively
generic nature of our proposed method.

G. Limitations

We demonstrate some failure cases in Fig. 11. Usually,
our method still faces two challenges: 1) salient objects with
varying subparts, e.g., the 1st row of Fig. 11, and 2) image
scenes with multiple salient objects, e.g., the 2nd row of
Fig. 11. In cases with high-quality depth yet salient objects
with significant color differences between their subparts, our
method fails to detect them accurately and mistakenly high-
lights some non-salient details. In the bottom row, there are
multiple similar objects in RGB images and depth maps, but
our method highlights only part of them. This is because
different salient objects are usually localized in different depth
layers, which mistakenly causes our method to treat salient
objects far from the camera as distractions.

H. Visualized Comparison Between Modality-Aware and
Modality-Unaware

In Fig 12, we have compared our method with some
modality-unaware methods (UCNet20 [52], D3Net21 [53],
ICNet20 [72], CoNet20 [111], BTSNet21 [64], and
S2MA20 [80]) regarding four types of RGB and Depth
combinations (see subfig-A to subfig-B). As shown in
subfig-A of Fig 12, when both RGB and depth are of high
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Ours

S2MA

Fig. 10. Visualizations of modality-aware (ours) and modality-unware (S2MA [80]) methods in terms of the last three fusion processing results in decoding
phase. MaF denotes Modality-aware Fusion.

DCF21

RGB Depth GT BTSNet21 Ours

Fig. 11. Demonstration of some representative failure cases.

TABLE IX
MODEL S1ZE AND RUNNING TIME COMPARISONS
NJUD NLPR
Sm?T FmT EmT MAE|[Sm?T FmT EmT MAE|
D3Net [53]|530MB 32 [.892 .863 .913 .047 |.902 .857 .943 .030
UCNet [52]{119MB 42 |.871 .874 .897 .051 |.898 .878 .945 .028
CCAF [90]|547TMB 36.4|.910 .898 .920 .037 |.922 .882 .952 .026
S2MA [80]|1352MB 26 |.894 .889 .930 .053 |.915 .902 .953 .030
CPFP [106]|375MB 7 |.878 .844 .906 .059 |.835 .740 .924 .064
ATSA [112]{123MB 29 |.901 .893 .921 .040 [.907 .876 .945 .028
A2dele [107]] 57TMB 120 |.919 .899 919 .037 |.926 .878 .949 .028
cmMS [109]{430MB 15 [.900 .897 .922 .044 |.915 .896 .949 .027
Ours (B+DE)|306MB 46 |.891 .825 .881 .058 [.902 .890 .885 .031
Ours|310MB 52 [.921 .903 .930 .037 |.933 .901 .955 .022

Models| Sizes] FPST

quality (denoted by ‘+’), modality-aware and modality-
unaware fusion-based methods can simultaneously obtain
satisfying results in terms of scenes of clear boundary
and multiple objects (though our modality-aware fusion
slightly outperforms modality-unaware fusion), since both
RGB and depth can positively contribute to the results.
However, when one of the RGB and depth is low-quality
(see subfig-B and subfig-C), the results of modality-
unaware fusion-based methods degrade. The reason is that
modality-unaware fusion-based methods do not appropriately
learn the complemental relationship between RGB and depth,
and they merely integrate the two-modality feature slices in a

local manner. In practice, when one modality dominates (the
higher-quality one) the fusion, the other (the lower-quality
one) may hinder the fusion and bring about negative effects.
Nevertheless, these methods treat the two modalities equally,
ignoring the harmony degree (what we call ‘modality-aware”)
between RGB and depth, which determines the degree of
complementarity. Conversely, our modality-aware method
can adaptively bias to the appropriate modality guided by
the learned relationships between RGB and depth. Therefore,
in cases of one modality dominating, our method is optimal
and has a higher performance ceiling. In subfig-D, in more
challenging cases when objects are occluded and small, and
depth maps are fuzzy, our modality-aware fusion can still
outperform those modality-unaware fusions since though both
two RGB and depth are low-quality, our method can still
appropriately learn the complemental relationship between
RGB and depth and bias to the appropriate modality, which
demonstrates the robustness of modality-aware fusion strategy.

In summary, our modality-aware fusion strategy can sur-
pass most of the existing modality-unaware fusion and will
enlighten future work regarding how to fully and appropriately
learn the relationships during cross-modality fusion.

L. Discussion of Our Performance Gain

Because we have adopted multiple sequential MaF mod-
ules to learn inter-modality relationships, our model size is
relatively large. In Table IX, we have conducted a model size
comparison, where our model lies in the middle level among
all compared methods. To verify whether our performance
gain is brought by additional model size, we have increased
the baseline model size by using additional decoder layers,
ensuring a fair comparison in model size. This modified
baseline model has been denoted by ‘B-+DE’. The results
have shown that increasing the model’s learning capacity
cannot ensure a corresponding performance gain, even if the
number of parameters is competitively large. By comparing
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Fig. 12. Visualized comparison among our method and some modality-unaware methods (UCNet20 [52], D3Net21 [53], ICNet20 [72], CoNet20 [111],

BTSNet21 [64], and S2MA20 [80]). ‘4’ denotes high quality, and - denotes low quality.

the modified baseline with our model, we can easily notice a
significant performance margin, e.g., the Sm metric of NLPR
has been increased from 0.902 to 0.933, which is a shred of
solid evidence to show that the additional model size does not
simply bring our performance gain.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel modality-aware
decoder to learn the relationship between different modali-
ties. The learned inter-modality relationship is used to guide
RGB-D saliency fusion. The essential technical contribution
is a novel idea to enable the RGB-D fusion process to be
modality-aware. Thus our fusion enables a significant per-
formance improvement without fancy network design. Our
key idea can also inspire other multi-modality-related fusion
works, where the usage of intermodality relationships is
beneficial in achieving better complementary status between
different modalities. We have also conducted an extensive
comparison and component evaluation, where the quantitative
comparison has confirmed our performance gain, and the quan-
titative component evaluation has verified the effectiveness of
each significant component adopted in our approach. We have
also released our codes and results, which can potentially
benefit our research community in the future. In the near
future, we are particularly interested in reducing the model size
without degrading model performance. We plan to devise more
efficient graph-based operations to substitute current plain
ID convolutions, i.e., adopting a more appropriate dynamic
adjacent matrix to fit our RGB-D ISOD task.
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