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Abstract—Salient Object Detection (SOD) aims to identify the
most attention-grabbing regions in an image and focuses on
distinguishing salient objects from their backgrounds. Current
SOD methods primarily use a discriminative approach, which
works well for clear images but struggles in complex scenes with
similar colors and textures between objects and backgrounds. To
address these limitations, we introduce the diffusion-based salient
object detection model (DiffSOD), which leverages a noise-to-
image denoising process within a diffusion framework, enhancing
saliency detection in both RGB and RGB-D images. Unlike
conventional fusion-based SOD methods that directly merge RGB
and depth information, we treat RGB and depth as distinct
conditions, i.e., the appearance condition and the structure
condition, respectively. These conditions serve as controls within
the diffusion UNet architecture, guiding the denoising process.
To facilitate this guidance, we employ two specialized control
adapters: the appearance control adapter and the structure
control adapter. Moreover, conventional denoising UNet models
may struggle when handling low-quality depth maps, potentially
introducing detrimental cues into the denoising process. To
mitigate the impact of low-quality depth maps, we introduce
a quality-aware filter. This filter selectively processes only high-
quality depth data, ensuring that the denoising process is based
on reliable information. Comparative evaluations on benchmark
datasets have shown that DiffSOD substantially surpasses existing
RGB and RGB-D saliency detection methods, improving average
performance by 1.5% and 1.2% respectively, thus setting a new
benchmark for diffusion-based dense prediction models in visual
saliency detection.

I. INTRODUCTION

Visual saliency detection’ (VSD) is a computer vision task
that aims to identify the most visually noticeable regions or
objects in an image or video. Salient object detection (SOD),
a specific task within VSD, focuses on distinguishing salient
objects from their backgrounds. It replicates the selective
attention mechanism of the human visual system, which in-
stinctively focuses on the most relevant or salient parts of a
scene. This task is crucial for downstream visual applications
such as image retrieval [1], group activity recognition [2], and
segmentation [3].

In recent years, the field of salient object detection
(SOD) [4] has witnessed significant advancements with
the introduction of deep learning techniques. State-of-the-
art (SOTA) methods, including RGB and RGB-D saliency
detection, have primarily adopted a “discriminate” perspec-
tive. These approaches focus on performing pixel-level “dis-
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't is mainly referred to RGB and RGB-D salient object detection (SOD)
in this paper.

Existing “Discriminative” Salient Object Detection
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Fig. 1. A. Saliency results comparison between existing discriminative
classification and our noise-to-image denoising method when facing scenes
with background noise. B. Illustration of DiffSOD. The model learns an
iterative denoising process to transform a randomly distributed saliency pattern
into a saliency map with two types of conditions to guide the denoising
process, and the quality-aware filter to filter out low-quality depth maps.

criminative” binary saliency classification, aiming to distin-
guish “salient” regions from ‘“non-salient” regions directly
at the pixel level. However, it has been observed that these
discriminate-based models face challenges when dealing with
complex scenes and background noise. The impact of back-
ground noise on SOD methods primarily manifests in several
aspects. Firstly, background noise may share similar col-
ors, textures, or other visual features with salient objects,
making it challenging for traditional feature-based methods
to distinguish between salient objects and the background.
Secondly, in some cases, noise elements in the background
may mistakenly attract the model’s attention, thereby reducing
the accuracy of identifying actual salient objects. Thirdly, due
to the diversity and complexity of background noise, SOD
models relying solely on discriminative learning may struggle
to maintain good generalization performance on unseen noisy
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backgrounds. As shown in Fig. 1-A (top of the figure), in
a complex scene with background noise, these models may
classify the trunk of a black cast copper column (yellow box)
as salient, while considering the ends of the column (red
box) as non-salient. These methods typically rely on learning
discriminative features or employing complex neural network
architectures to classify pixels as salient or non-salient. Al-
though they have shown promising results in some cases,
their effectiveness in handling noisy images and background
distractions is limited.

In contrast to existing discriminate-based methods, this
paper aims to enhance model resilience against complex back-
ground noise. Drawing inspiration from the recent successes of
diffusion models [5], [6] in various generative tasks, we pro-
pose a novel “noise-to-image denoising” approach to optimize
visual saliency detection. The denoising diffusion framework
enhances visual saliency detection by progressively refining
features through iterative denoising, making it robust to noise
and complex backgrounds. Unlike single-step methods, this
approach leverages contextual information to better separate
salient objects from ambiguous regions, resulting in improved
accuracy and adaptability in challenging scenes. As shown in
Fig. 1-A (bottom of the figure), our method performs well
even under the interference of complex background noise.
To achieve this, we employ existing noise-to-image denoising
models, which transforms random noise masks into saliency
maps through an iterative denoising process. This allows the
model to gradually refine saliency predictions at each itera-
tion, effectively distinguishing salient objects from background
noise. However, conventional noise-to-image denoising mod-
els that follow a random denoising process present challenges
in achieving our goal. The random denoising process in these
models lacks control, which can lead to the generation of
saliency maps with inferior quality. Therefore, our insight is
to devise a controlled diffusion model for saliency conditions,
where our proposed conditions regulate latent saliency features
in the noise-to-saliency process. This allows our models to
transform the “discrimination-based” perspective into a “noise-
to-image denoising~” perspective.

In our study, we introduce two main innovations that
enhance the generation of saliency maps through a noise-
to-image denoising process. We guide this process with two
key conditions (Fig. 1-B): the appearance condition and the
structure condition. These are managed by two specialized
adapters. The appearance control adapter (Sec. ) exam-
ines the visual aspects of an image to help distinguish salient
objects from complex backgrounds effectively. The structure
control adapter (Sec. ), on the other hand, uses depth
data to outline the salient objects’ shapes more precisely.
These adapters collectively ensure a more controlled denoising

2Indeed, in images captured under natural lighting conditions, background
information contains rich scene details and environmental cues, which can
be considered as an important information dimension rather than just noise
interference. However, from the perspective of visual saliency detection, the
objective is to highlight salient objects and reduce attention to non-salient
elements (which may include certain background information). Therefore, the
term “denoising” may not be entirely appropriate in some contexts, but its
usage is more of a simplification for the sake of addressing the impact of
background complexity on saliency detection.

process, yielding accurate and coherent saliency maps. Addi-
tionally, conventional denoising UNet models may struggle
when handling low-quality depth maps, to address this issue,
we’ve introduced a quality-aware filter (Sec. ) approach.
This selectively processes only the depth data that meets our
quality standards, e.g., high-quality depth maps, maintaining
the robustness and reliability of our saliency detection method.
In summary, our contributions can be summarized as follows:

« We introduce an insightful perspective by advocating for
a shift in visual saliency methods towards a “noise-to-
image denoising” approach. This perspective challenges
the conventional “discriminate” viewpoint and opens up
new possibilities for visual saliency detection.

« To control the noise-to-saliency process, we propose to
leverages two types of conditions — appearance and
structure, which is achieved by two specialized adapters.

e We propose a quality-aware filter to selectively use
the high-quality depth data, preventing low-quality input
from weakening the detection process and ensuring reli-
able saliency outcomes.

o Experimental results suggest Diff SOD achieves state-of-
the-art performance on both RGB and RGB-D SOD
benchmark datasets, which demonstrates its effectiveness.
Codes, datasets, and results are available at https://github.
com/MengkeSong/DiffSOD.

II. RELATED WORK

A. CNN-based Visual Saliency Detection Models

Visual Saliency Detection can be categorized into two
types: RGB/RGB-D Salient Object Detection (SOD). In re-
cent years, significant progress has been made in image
saliency object detection using CNN-based approaches. These
methods [7]-[10] leverage the powerful feature representation
capabilities of CNNs to capture both low-level and high-
level visual information. Various CNN architectures, such
as VGGNet [11], ResNet [12], and DenseNet [13], have
been employed to extract discriminative features from images.
Additionally, some techniques [!4] combine deep learning
with traditional methods, further enhancing the performance of
image saliency object detection. Certain works [15], [16] have
introduced attention mechanisms to learn more discriminative
features, including spatial and channel attention and pixel-
wise contextual attention. Other approaches [17], [18] have
explored the use of recurrent networks to refine the saliency
map progressively. Furthermore, multi-task learning has been
utilized to incorporate fixation prediction, image captioning,
and edge detection, leading to improved SOD performance.

The integration of color (RGB) and depth data, known
as RGB-D SOD, has gained considerable attention due to
the availability of depth sensors and the additional geometric
information they provide. CNN-based methods for RGB-D
SOD [19]-[24] have proven to be effective in accurately cap-
turing the interactions between color and geometry. Conven-
tional methods [25], [26] often fuse RGB and depth features
through middle fusion strategies. This enables them to model
better the complex relationships between color contrast and
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depth discontinuity, resulting in improved detection perfor-
mance. Some approaches utilize depth cues to generate spatial
or channel attention for enhancing RGB features. Dynamic
convolution, graph neural networks, and knowledge distilla-
tion have also been adopted for multi-modal feature fusion.
Moreover, the cross-attention mechanism has been utilized to
facilitate long-range cross-modal interactions between RGB
and depth cues.

However, many current saliency detection methods heavily
rely on CNN architectures, which limits their ability to capture
long-range dependencies. Certain techniques aim to integrate
global and local information to achieve accurate salient re-
gion detection. For example, Zhang et al. [27] proposed a
framework that considers the complementary nature of global
positions and local details from two modalities, yielding favor-
able results. Nevertheless, these methods still face challenges
in fully exploiting the advantageous relationships between
features.

B. Transformer-based Visual Saliency Detection Models

As Vaswani et al. [27] first proposed a Transformer encoder-
decoder architecture for machine translation, where multi-head
self-attention and point-wise feed-forward layers are stacked
multiple times to capture long-range global dependencies,
more and more works have introduced the Transformer model
to various computer vision tasks and achieved excellent results.
For the visual saliency detection task, some recent works [28]—
[35] also adopt the Transformer structure. Some first use CNNs
to extract image features and then leverage the Transformer to
incorporate long-range dependencies [29], [36]. Others com-
bine CNNs and Transformers into hybrid architectures [33].
Also, some use pure Transformer-based models for feature
representation learnings [28], [37].

These CNN/Transformer-based models are primarily fo-
cused on discrimination, learning to distinguish between
salient and non-salient regions at a pixel level. While they can
achieve impressive performance in relatively simple scenes,
these discrimination-based models often struggle when con-
fronted with complex scenes containing background noise and
distractions. To address this limitation, our research proposes
an alternative approach: a shift from discrimination-based clas-
sification to a noise-to-image denoising framework. This novel
framework incorporates advanced techniques and saliency con-
ditions to enhance the generation process of saliency maps. By
adopting this perspective, we aim to overcome the challenges
posed by complex scenes, providing a more effective solution.

C. Diffusion-based Models in Computer Vision

The diffusion model is a powerful generative model that
uses a forward Gaussian diffusion process to sample a noisy
image and then refines it using a backward generative process.
Diffusion models have shown great potential in various fields
such as image synthesis [38], image editing [39], and image
super-resolution [40] tasks due to their ability to capture
high-level semantic information. Several works have explored
the application of the image diffusion model in different

areas. MedSegDiff [0] proposes the first DPM-based med-
ical segmentation model, and MedSegDiff-V2 [41] further
improves the performance based on it using a Transformer.
In diffCOD [42], the model learns to reverse the diffusion
process that transforms ground-truth masks into random dis-
tributions. CamDiff [43] utilizes a latent diffusion model
to synthesize salient objects within camouflaged scenes and
DiffusionDepth [44] learns an iterative denoising process to
refine depth maps.

However, there are no studies that demonstrate the effec-
tiveness of diffusion models in the SOD task. In this paper,
we propose to use the diffusion model for denoising the input
RGB (or depth) as a conditioned saliency refinement process
instead of adopting it as a typical generative head. To our
knowledge, this is the first work introducing the diffusion
model into the SOD task.

III. THE PROPOSED METHOD

A. Method Overview

The key insight of our method is to enhance the gener-
ation of saliency maps through a noise-to-image denoising
process. Fig. 2 illustrates the method pipeline of our de-
noising diffusion-based visual saliency detection model. Our
approach comprises three main components: 1) denoising
UNet (Sec. ), 2) quality-aware filter (Sec. ), and
3) control adapter (Sec. ).

Initiated with a random noise mask Z7, the model employs
a state-of-the-art denoising UNet (e.g., [45]), which iteratively
refines the saliency map. This process is meticulously guided
by two specialized control adapters — the appearance control
adapter, informed by RGB image characteristics, and the
structure control adapter, shaped by depth information, en-
suring the saliency map accurately outline object contours. A
quality-aware filter (QAF) is integral to the model, selectively
incorporating only high-quality depth maps, thus enhancing
the fidelity of saliency detection. Next, we will introduce each
component in detail.

B. Preliminaries: Denoising UNet

In this work, we approach visual saliency detection from
a noisy-to-image perspective and formulate it as a diffusion
model. Specifically, we reformulate SOD, which includes RGB
SOD and RGB-D SOD, as a diffusion model that utilizes the
denoising UNet architecture, similarly to [5], consisting of an
encoder and a decoder (depicted in Fig. 2-“E” and “D”).

A diffusion model consists of two fundamental processes:
the forward noise process and the backward diffusion process.
During the training phase, the forward noise process is trained
iteratively (for each step ) to serve as a prior for the backward
diffusion process. In the testing phase, the backward diffusion
process reverses the forward noise process and generates the
desired image as the output. The forward noise process, de-
noted as ¢(+), introduces noise to the desired image distribution
zo from a noise variance schedule [, within the Gaussian
space N (-). This process generates a latent noisy sample z;.
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Fig. 2. Our proposed diffusion-based visual saliency detection model is adeptly structured to handle both RGB and RGB-D SOD tasks. The model initiates

with a quality-aware filter (PART A, Sec.

), which rigorously processes only high-quality depth maps to ensure the robustness and reliability of the

subsequent denoising process. Furthermore, to enhance the precision of the denoising phase, two specialized control adapters (PART B and PART C) are

implemented. These adapters guide the denoising process by leveraging “appearance” and “structure” conditions, which are detailed in Sec.
, respectively. Notably, the structure condition, involving both PART A and PART C, is specifically excluded in RGB SOD task to optimize

Sec.

and

task-specific processing efficiency. During testing, when using RGB-D data as input, if the depth map quality is low, the network will ignore the depth and

rely solely on RGB for prediction.

For each iterative step ¢t € 0,1, ..., T, the forward noise process
can be expressed by:

q('zt | ZO) :N(zt ‘ \/d»t'zm(l —%'I),

| (1

t t
l_Is:OOé5 = Hszo(l - ﬁs)

where ¢(-) denotes the forward noise process, zo represents the
desired image distribution and z; represents the latent noisy
images. The forward noise process introduces noise to the
desired image distribution within the Gaussian space denoted
by N(-). I is the denoised image. a, represents the signal
retention ratio for a single step s, defined as 1 — 3,, where
Bs is the noise variance introduced at each step. a; is the
cumulative product of a from step O to t, representing the
total signal retention ratio up to step t. &y - zp scales the
signal component, while (1 — a;) - I represents the variance
of the noise component, showing how signal and noise evolve
through the diffusion steps.

The backward diffusion process, based on the forward diffu-
sion process, aims to reverse the effects of noise to iteratively
recover the desired image distribution from a latent noisy
sample, denoted as z;. This iterative process involves sampling
each iteration, denoted as py(z;—1 | z:), from a Gaussian

distribution N (pg(2¢,t),09(2¢,t)). A network predicts the
mean and variance of the Gaussian distribution. During each
iterative step ¢ € 0,1, ..., T, the forward noise process can be
described by:

pQ(Zt—l | Zt) :N(:u@(ztvt)aO-Q(ztat))v (2)

We reformulate the saliency detection as a saliency-
condition-guided denoising process. Saliency-condition-
guided denoising saliency detector inputs ¢ as latent noise
saliency distribution 2; in the conventional diffusion model,
and outputs desired saliency map zp, The noise-to-saliency
process can be presented as:

pa(zt—l | Zt7c) :N(/Lo(ztatac)7Za(ztvtac))a (3)

where model p6(z¢,t, c) is trained to refine latent z; to z;—1.
To accelerate the denoising process, we utilized the improved
inference process from DDIM [46], where it set Y 60(z,t,¢)
as 0 to make the prediction output deterministic.

C. Quality-aware Filter

In typical CNN/Transformer-based multi-modality visual
saliency detection tasks [47], [48], such as RGB-D SOD,
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Fig. 3. Visualization of the reconstruction results (Sec. ). “D”: depth
maps, “Masked D”: depth maps masked with certain masking ratio (here the
masking ratio is 20%), “Reconst. D”: reconstruted depth maps.

depth maps provide essential spatial details that augment
RGB images. The quality of these depth maps is crucial for
improving saliency prediction accuracy. Variations in depth
sensor quality can lead to noisy or blurred depth maps,
which impede the learning process in RGB-D models and
degrade overall performance. Conventional denoising UNet
models often struggle with this challenge, since they lack
mechanisms to assess the accuracy and clarity of depth data,
treating all inputs uniformly without distinguishing between
high-quality and low-quality depth maps. Consequently, these
models may inadvertently incorporate erroneous depth cues
into the saliency detection process.

Building upon existing fusion-based RGB-D SOD methods
that focus on evaluating and optimizing depth map qual-
ity [19], [20], we introduce a quality-aware filter (QAF)
approach. This method dynamically selects high-quality depth
maps, ensuring the structure condition (Sec. ) in-
corporates only reliable depth data, thereby filtering out
lower-quality inputs that could impair model performance.
Drawing inspiration from masked auto-encoder architectures
(e.g., [45]), as shown in Fig. 2-PART A, our QAF employs a
self-supervised strategy to reconstruct the original depth map,
assessing its quality based on the reconstruction error relative
to the original depth.

The implementation involves segmenting the original depth
map into small blocks. Random masks are applied to some
blocks, followed by an encoder-decoder process that recon-
structs the depth map. For more details on the methodology,
refer to [45]. During the training phase, only high-quality
depth maps are used to improve the model’s reconstruction
capabilities. The visualization of these results is shown in
Fig.

Our approach is predicated on the assumption that high-
quality original depth maps will yield low reconstruction
errors, whereas low-quality maps will result in high errors. The
use of depth information in our DiffSOD model is determined
by the magnitude of the reconstruction loss, formulated as

follows:

.
“)

where Lyeconst represents the reconstruction loss, with cosine
similarity used as the metric. The variables Dyt and Dygrget
refer to the original and reconstructed depth maps, respec-
tively. The hyper-parameter o is set to define the acceptable
quality threshold for depth maps, the effectiveness of which is
discussed in the ablation analysis presented in Table I'V. The
binary indicator A determines the usage of depth information
in our DiffSOD model: A = 1 signifies inclusion of the
depth map in the denoising process, while A = 0 indicates
exclusion.

In summary, by pre-training the model using only high-
quality depth maps from existing datasets such as the
KITTI [49] and the NYU Depth [50] datasets, the model
effectively learns the structural information that depth maps
should contain. During testing, regardless of the quality of
the input depth map, the pre-trained model uses this structural
knowledge to guide reconstruction. When the input quality is
high, the reconstruction loss is small; when the input quality
is low, the reconstruction loss is large. Through the variation
in reconstruction loss, the model can indirectly assess the
quality of the input depth map, while also demonstrating its
adaptability in handling depth maps of varying quality.

Note that QAF is a preprocessing stage and is pre-trained
before the denoising process begins. With QAF in place, if a
depth map is of low quality, the structure condition is omitted,
and only the appearance condition (i.e., RGB) is utilized in the
denoising process.

17 if Lreconst(DinputaDtarget) S g,

07 lf Lreconst(DinputyDtarget) > g,

D. Control Adapter

In deep learning, particularly within diffusion models uti-
lized for image generation tasks, a “control adapter” is em-
ployed to introduce additional control information during the
generation process. This additional information guides the
model in generating images with specific styles or features.
For instance, in conditional generation tasks, a control adapter
aids the model in producing images that meet particular
requirements based on provided conditional information, such
as category labels or textual descriptions.

Building on this idea, we propose the concept of a “control
adapter” for visual saliency detection tasks, consisting of
two specialized types: the appearance control adapter, which
responds to appearance conditions, i.e., RGB image char-
acteristics, and the structure control adapter, which utilizes
structure conditions, i.e., depth information. By integrating
both adapters, our goal is to achieve precise control over the
saliency generation process. Details of the appearance and
structure control adapters are illustrated in Fig. 2-PART B
and PART C. We will now describe these adapters in further
detail.

1) Appearance Control Adapter: The inherent visual com-
plexity of natural images requires subtlety interpretation to
generate accurate saliency maps effectively. Therefore, as
shown in Fig. 2-PART B, we leverage the CLIP image
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Fig. 4. Tllustration of semantic guidance injection (Eq. 5 and Eq. 6). The
semantic condition is integrated with the noise through a hierarchical FFT,
co-attention mechanism, and inverse FFT.

encoder (e.g., CLIP ViT-B/32) to extract appearance condition
embeddings. Since CLIP’s training on a vast array of images
paired with textual descriptions equips it with the capability to
grasp and represent complex semantic concepts found across
both visual and textual domains. This profound semantic
understanding makes CLIP embeddings particularly beneficial
for tasks requiring intricate interpretations of visual content.

As previously mentioned, our method aims to predict the
desired saliency map from a noisy mask, posing a domain gap
between its embedding and the initial appearance condition
generated by CLIP image encoder. This high-level initial ap-
pearance condition features have different feature distributions
compared to the saliency distributions during the noise-to-
saliency process. This discrepancy can lead to confusion and
incorrect representation of latent saliency features.

To bridge this gap, we propose an innovative solution
called semantic guidance injection (SGI), which effectively
combines initial appearance condition embedding and diffu-
sion embedding. The SGI, illustrated in Fig. 4, enables our
approach to learn the interaction between latent noise and
initial appearance condition features, resulting in more robust
representations of latent saliency features. The SGI consists
of two blocks that share the same structure. Each block
includes a discrete Fourier transform (FFT(-)), two co-attention
modules, element-wise multiplication, and an inverse Fourier
transform (IFFT[-]). The main motivation for introducing the
Fast Fourier Transform (FFT) into the appearance control
adapter is to enhance the alignment and interaction between
saliency features and noise features, thereby better guiding the
model in the denoising and saliency prediction processes.

In the first block, given the noise embedding z7 and the
initial appearance condition embedding cy, we first perform
FFT(-) along the spatial dimensions to convert zr and cg to
the frequency domain:

Zp = FFT(27),Co = FFT(cy), (5)

where FFT(-) denotes the discrete Fourier transform, and Zp
and Cj are the features in the frequency domain of z and cg.
After obtaining the frequency representations, we utilize two
co-attention modules. Specifically, the embedding Cj serves
as the key (k) and the noise embedding Zp serves as the
query (q), allowing us to perform a cross-attention operation
between the features from both embeddings, ensuring effective
interaction between the initial appearance condition and the
latent noise features. The features are then combined using
element-wise multiplication to produce a modulated repre-
sentation. Next, an inverse FFT (IFFT) is applied to convert
the modulated frequency representation f(Zr,Cp) back to
the spatial domain. After applying Layer Normalization, the
result is further refined using a Multi-Layer Perceptron (MLP),
resulting in the updated appearance condition embedding cé:

co = MLP(IFFT[f(Zr, Cy))), ©6)

where IFFT[-] represents the inverse Fourier transform.

In the second block, cé) is used as the query (q) and the
noise embedding z7 serves as both the key (k) and value (v).
After applying Layer Normalization and FFT, the embeddings
are processed through two co-attention modules, similar to the
first block, ensuring alignment between noise and the updated
condition embedding. The output features are then modulated
through element-wise multiplication, converted back to the
spatial domain via inverse FFT, and normalized again. Finally,
another MLP is applied to produce the final transformed
embedding c¢; which serves as the refined appearance con-
dition and is injected into all encoder-decoder blocks in the
denoising UNet model via cross-attention, effectively guiding
the denoising process.

2) Structure Control Adapter: Unlike conventional cross-
modality fusion-based RGB-D SOD methods [16], [51], our
noise-to-image denoising technique introduces a novel struc-
ture control adapter, drawing inspiration from ControlNet [52],
as shown in Fig. 2-PART C. This adapter capitalizes on the
integration of structural and depth information to precisely
define the contours of salient objects during the denoising
process.

Instead of adding conditions directly to the input noise as in
ControlNet, our approach employs a Feature Pyramid Network
(FPN) as the backbone for feature extraction. This backbone
processes the input structure condition — specifically, the
depth map — to extract multi-scale feature embeddings. These
feature embeddings capture both coarse and fine details of the
scene, crucial for effective denoising.

The multi-scale feature embedding process begins by up-
sampling each feature level (MF;) to a uniform scale. Convo-
lution operations are then applied to each upsampled feature.
We utilize a straightforward feature-level concatenation (C),
followed by multiple convolution layers to produce the struc-
tured condition Cong:

4
Cong :Conv(C(Z Conv(UP(MEZ—)))) ,
i=1

(7
——
FPN(D)
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where Conv denotes the 3x3 convolution operation, and UP
is the upsample operation. D is the input structure condition,

i.e., depth.
After establishing the backbone and feature embedding, we
fix the original weights of the denoising UNet (Sec. )

and replicate the encoder (E) structure and weights, creating
E'. This copied encoder integrates the structural information
during the decoding phase to enhance the detail and accuracy
of the denoising results. To achieve it, we ensure that all
other elements in the denoising UNet remain unchanged while
modifying the input of the ¢-th block of the decoder as:

), if i=1,i+j =13,

{ C(m + Cong, e; + zero(e

C(di—1,e; + zero(e;)), if 2<i<12,i+j=13.

’ (®)
Here, m denotes the output from the final block of the en-
coder. This output is combined with the output of the structure
control adapter, Cong, and then supplied to the first block of
the decoder. Cony is crucial as it adjusts the decoder’s ability to
accurately render the contours of salient objects. The variable
d;—1 refers to the output from the (i — 1)-th block of the
decoder and serves as the input for the succeeding block. The
terms e; and e;- represent the outputs from the j-th block of the
original encoder E and the copied encoder E, respectively. The
function zero(-) denotes a zero-weight convolutional layer,
which is utilized to incrementally incorporate structural control
information into the main denoising UNet framework.

E. Loss Functions

The diffusion process ¢ (z: | z0) and denoising process
po (2t—1 | 2¢) are respectively defined in Eq. | and Eq.
Trainable parameters are mainly the conditioned denoising
model pg(2¢,t,¢) and saliency feature defined above. The
objective of the denoising UNet is defined as:

LDiffusion :” Zt—1 — M@(Zta L‘,C) ”2 . &)

The DiffSOD is trained by combining losses through a
weighted sum and the total loss L;,t,; can be defined by:

Liotat = @1 - Lpiffusion + 2 - LpcE, (10)

where o1 and a9 are hyper-parameters. Lpcog is the binary
cross-entropy loss.

IV. EXPERIMENTS
A. Implementation Details

We implemented our proposed method using PyTorch with
an NVIDIA GeForce RTX 3090 GPU. The model training
is divided into two parts: QAF (Quality-Aware Filter) and
DiffSOD (Diffusion-based Visual Saliency Detection). QAF
and DiffSOD were trained separately, with QAF’s output
guiding the structure control used by DiffSOD during the
denoising process.

For QAF training, we utilized the MultiMAE framework
for self-supervised learning, reconstructing depth maps from
masked inputs. Random masking is applied to depth maps, and
the network reconstructs the original ones. The architecture

has an encoder and a decoder, minimizing reconstruction
error measured by cosine similarity. High-quality depth maps
from KITTI and NYU Depth datasets were used, with Adam
optimizer and an initial learning rate of le-4, decayed by
a factor of 10 at the 60th epoch, and a batch size of 16.
For DiffSOD, it’s a diffusion-based visual saliency detection
model. Following [16], [53], it used widely accepted RGB
and RGB-D saliency detection benchmarks, resizing all inputs
to 352x352. Trained with Adam optimizer starting at le-4,
decayed at the 60th epoch. The training involved forward and
backward diffusion processes with 7' = 1000 and a linear
noise schedule, batch size of 2. The loss function combines
diffusion loss and binary cross-entropy loss. It had a two-stage
training: pre-training with high-quality depth maps and then
using QAF to select reliable depth data. Each epoch took about
5 hours on the GPU.

To comprehensively demonstrate the effectiveness of the
model, we also conducted component evaluations and ablation
studies on RGB SOD datasets, using depth maps generated by
existing depth estimation methods (e.g., DepthFormer [56]) for
comparison.

B. Datasets and Evaluation Metrics

In our experiments, we follow the prevalent settings of
different SOD tasks. Specifically, for RGB SOD, we use
the training subsets of DUTS [57] to train our method, and
evaluate the effectiveness of our method on five widely used
public benchmark datasets, i.e., DUT-OMRON [58] with 5,168
images, ECSSD [59] with 1,000 images, HKU-IS [60] with
4,447 images, PASCAL-S [61] with 850 images, DUTS-
TE [57] with 5,019 images. For RGB-D SOD, we choose
2185 samples from NLPR [55] and NJUD [54] as the train-
ing set. The testing sets are seven widely used benchmark
datasets: STEREO [62] (797 image pairs), LESD (100 image
pairs), SSD (80 image pairs), NJUD [54] (1,985 image pairs),
NLPR [55] (1,000 image pairs), SIP [25] (929 image pairs),
and ReDWeb-S [63] (3,179 image pairs).

Four metrics are adopted for quantitative evaluation, includ-
ing S-measure (Sm) [64], F-measure (Fm) [65], E-measure
(Em) [66] and mean absolute error (MAE).

C. Comparison with the SOTA Models

To demonstrate the effectiveness of the proposed method,
we compare it with the SOD models, which are widely used
and well recognized in the community. For RGB-D SOD, we
compare our DiffSOD with 12 state-of-the-art (SOTA) CNN-
based RGB-D SOD methods, i.e., DMRA [67], CPFP [68],
S2MA [69], A2dele [70], D3Net [25], UCNet [26], BBS [15],
CIRNet [21], SPNet [22], SSL [71], MIRV [72], DIM [73], and
6 Transformer-based RGB-D SOD methods, HFMD [74], i.e.,
CPNet [75], DCM [76], HTrans [32], CAT [33], and VST [28]
(a Transformer-based unified model for both RGB/RGB-D
SOD). For RGB SOD, we compare our DiffSOD with 19
SOTA RGB SOD models, including 7 CNN-based RGB SOD

methods, i.e., SGL [77], PA-KRN [77], DAD [78], EDN [79],
MENet [80], TSD [81], LARNet [82] and 9 Transformer-
based RGB SOD methods, i.e., VST [28], SDETR [83],
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TABLE I
QUANTITATIVE COMPARISON OF OUR PROPOSED DIFFSOD WITH OTHER 18 SOTA CNN-BASED AND TRANSFORMER-BASED RGB-D SOD METHODS
ON 7 BENCHMARK DATASETS. THE TOP-2 RESULTS ARE MARKED IN RED AND GREEN.

|« CNN-based Models >}« Transformer-based Models ———»|
Model DMVRA PFP A A2dele D SSL MIRV DIM VST HTrans CAT CPNet DCM HFMD Ours
Year 2019 | 2020 | 2020 | 2020 | 2021 | 2021 | 2021 | 2022 | 2022 | 2022 | 2023 | 2023 | 2021 | 2023 | 2023 | 2024 | 2024 | 2024

FLOPs (G) - - 70.5 21 1985 | 8.8 |31.32|145.1 | 135.8 - 30.8 - 31 17.12 | 341.8 | 186.7 - - 352.6
Params (M)| 59.7 | 69.5 | 86.7 | 30.3 | 43.2 | 333 | 498 | 60.2 | 1753 | 74.2 | 186.3 | 31.6 | 83.8 | 58.9 | 262.6 | 216.5 80.3 |431.6]279.1
Speed (FPS)| 16.2 6.5 9.3 120 65.2 | 17.1 | 26.1 14 124 | 52.4 | 185 | 90.0 | 67.8 | 77.3 | 22.8 65.5 | 84.2 9.9 22.9
Smt| .886 | .878 | .894 | .871 | .892 | .897 | 919 | .915 | 914 | 909 | .890 | .902 | .922 | .930 | .928 | .935 | .932 | .934 | .938

Fmt| .872 | .877 | .889 | .874 | .863 | .886 | .899 | .897 | .890 | .884 | .880 | .918 | .914 | .927 | .925 | .933 | .928 | .935 | .937

Emt| .908 | .906 | .930 | .897 | 913 | 915 | 919 | 922 | 920 | 928 | .929 | 921 | .899 | 931 | 933 | 935 | .937 | 935 | .938

Ml| .051 | .053 | .053 | .051 | .047 | .043 | .037 | .035 | .036 | .038 | .046 | .036 | .034 | .028 | .027 | .025 | .031 | .024 | .022

Smt| .899 | .888 | 915 | .898 | 902 | .920 | .826 | .923 | 926 | .909 | 914 | .896 | .931 | .938 | .934 | .940 | 934 | 938 | .942

Fmt| .855 | .822 | .902 | .878 | .857 | .890 | .878 | 914 | 901 | .884 | .895 | .899 | .886 | .919 | .916 | .924 | .923 | .925 | .927

Emt| .942 | 924 | 953 | 945 | 943 | 953 | 949 | 952 | 954 | 939 | 953 | 957 | .954 | 962 | 961 | .965 | .961 | .961 | .967

Ml| .031 | .036 | .030 | .028 | .030 | .025 | .028 | .023 | .024 | .038 | .025 | .023 | .023 | .020 | .021 | .016 | .023 | .017 | .015

Smt| .806 | .850 | .872 | .829 | .860 | .873 | .876 | .888 | .869 | .871 | .876 | .866 | .904 | .909 | .908 | .907 | .911 | .886 | .913

Fmt| .819 | .818 | .849 | .825 | .835 | .868 | .874 | .885 | .872 | .875 | .863 | .887 | .895 | .910 | .905 | .917 | .923 | .896 | .919

Emt| .863 | .899 | 911 | .892 | 902 | 913 | 915 | 923 | 908 | 921 | .924 | 910 | .937 | 940 | .934 | .941 | 937 | 925 | .941

Ml| .085 | .064 | .058 | .070 | .063 | .051 | .056 | .052 | .055 | .046 | .049 | .052 | .040 | .037 | .038 | .035 | .033 | .044 | .032

Smt| .886 | .871 | .890 | .879 | .885 | .903 | 909 | .913 | .899 | .886 | .890 | .888 | .909 | .918 | .917 - - - 922

Fmt| .868 | .827 | .882 | .874 | .855 | .885 | .886 | .896 | .883 | .875 | .892 | .894 | .905 | .905 | .908 - - - 914

Emt| .920 | .897 | .932 | 915 | 920 | .922 | 927 | 930 | .924 | 919 | 917 | .927 | .929 | .932 | .935 - - - .935

Ml| .047 | .054 | .051 | .044 | .046 | .039 | .041 | .038 | .043 | .045 | .045 | .038 | .039 | .035 | .035 - - - .032

Smt| .847 | .828 | .837 | .834 | .825 | .854 | .856 | .865 | .847 | .834 | .849 | .873 | .884 | .887 | .892 | .892 - .880 | .898
Fmt| .849 | .813 | .835 | .832 | .810 | .845 | .850 | .852 | .843 | .819 | .844 | .877 | .871 | .879 | .881 | .890 - 871 | .879

Emt| .899 | .867 | .873 | .871 | .862 | .891 | .889 | 901 | .887 | .888 | .889 | .904 | .903 | .905 | .908 | .919 - 910 | .921

Ml| .075 | .088 | .094 | .077 | .095 | .076 | .074 | .068 | .078 | .080 | .072 | .060 | .061 | .064 | .052 | .049 - .059 | .048

Smt| .857 | .807 | .868 | .802 | .847 | .865 | .870 | .868 | .865 | .855 | .871 | .881 | .889 | .883 | .879 - - .885 | .891
Fmt| .821 | .725 | .848 | .776 | .815 | .854 | .832 | .829 | .830 | .833 | .828 | .862 | .871 | .874 | .872 - - .871 | .879

Emt| .892 | .832 | 909 | .861 | .888 | .907 | 904 | .895 | .899 | .896 | .891 | .907 | .913 | .922 | .931 - - 915 | .934

Ml| .058 | .082 | .052 | .070 | .058 | .049 | .049 | .048 | .047 | .050 | .047 | .049 | .045 | .045 | .046 - - .040 | .043

Smt| .592 .685 711 .641 .689 713 .692 .703 .709 710 | .699 | .725 .759 .763 .764 - .765 747 .769
Fmt| .579 | .645 | .675 | .603 | .673 | .710 | .647 | .708 | .712 | .706 | .684 | .716 | .755 | .762 | .761 - 761 | 744 | .767
Emt| .721 | .744 | .750 | .678 | .768 | .794 | 709 | .748 | .759 | .754 | .746 | .760 | .813 | .815 | .818 - .821 | .798 | .825

Ml| .188 | .142 | .140 | .160 | .149 | .130 | .150 | .132 | .129 | .136 | .143 | .122 | .113 | .115 | .116 - 115 | 119 | 111

SDG [84], SelfRe [85], BBRF [31], TIGAN [86], UGLR [87],
ELSA [88], Prior [89] and 3 diffusion-based methods MD-
iff [41], dCOD [42], and Camo [90]. Note that the MDiff
and dCOD are proposed for medical image segmentation and
camouflaged object detection, respectively. We retrain them
using RGB SOD training sets. The compared results are from
the codes or saliency maps provided by the authors.

1) Quantitative Evaluation: The quantitative comparison
results for RGB-D and RGB SOD are shown in Table [
and Table II. Our method outperforms previous CNN, Trans-
former, and diffusion-based SOD models on both benchmarks,
achieving top performance on datasets such as NJUD, NLPR,
DUTS, and ECSSD, while maintaining competitive results
on others. For RGB SOD, we provide two comparisons: (1)
using RGB only (“Ours”) and (2) using RGB with estimated
depth (“Ours+”). In the “ours” method, we disable the depth
branch by dynamically excluding low-quality depth infor-
mation using the Quality-Aware Filter (QAF), allowing the
model to rely solely on RGB input. In contrast, the “Ours+”
method incorporates both RGB and depth information. Instead
of removing the depth branch entirely, the model selectively
ignores depth information when deemed unreliable, preventing
network mismatch and ensuring robust saliency detection.

This selective use of depth is managed through the Structure
Control Adapter (SCA).

As shown in Table II, our method demonstrates strong
performance with RGB data alone, highlighting its robustness
in complex scenes. When incorporating estimated depth in-
formation, the performance further improves, emphasizing the
adaptability of our approach to additional depth cues. This
improvement is driven by the iterative denoising process in our
diffusion framework, which effectively suppresses background
noise, enhances salient regions, and integrates complementary
depth information. Additionally, our model performs strongly
on challenging datasets like ReDWeb-S and DUT-OMRON,
further validating the effectiveness of DiffSOD.

2) Qualitative Evaluation: Fig. 5 showcases the visual
comparison results of our proposed DiffSOD model against
state-of-the-art representative models. The first row highlights
the outstanding performance of our model in detecting multi-
ple objects. In the second, third, and fourth rows, we observe
that our model surpasses others in capturing salient regions
with more complex objects, resulting in clear boundaries.
These visual results demonstrate the effectiveness of DiffSOD
in saliency detection, particularly in scenarios involving com-
plex backgrounds and objects of various shapes.
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TABLE 11
QUANTITATIVE COMPARISON OF OUR PROPOSED DIFFSOD WITH OTHER 19 SOTA CNN-BASED, TRANSFORMER-BASED, AND DIFFUSION-BASED RGB
SOD METHODS ON 5 BENCHMARK DATASETS. THE TOP-2 RESULTS ARE MARKED IN RED AND GREEN., “OURS”: USING RGB ONLY; “OURS+”: USING
RGB WITH ESTIMATED DEPTH.

J¢———————CNN-based Models——— pj¢———————————Transformer-based Models——p]«———Diffusion-based——»|

Year 2021 | 2021 | 2022 | 2022 | 2023 | 2023 | 2024 | 2021 | 2022 | 2022 | 2022 | 2023 | 2024 | 2024 | 2024 | 2024 | 2023 | 2023 | 2024
FLOPs (G) - 197.4 - 74.6 85.3 - - 50 - - - 92 - - - 152.9 | 983 | 375.3 | 389.4 | 279.3 | 352.6
Params (M) - 102.2 - 83.6 51.5 - 66 44.5 56.7 - - 74.4 - - 31.9 | 104.6 | 379.1 | 253.7 | 247.2 |1 178.5 | 279.1
Speed (FPS), - - - 6.7 45.0 - 98.1 86.2 26.9 - - 21.2 - 15 52 36.5 7.4 14.1 25.6 28.7 229
Smt| .923 928 - 927 .928 .909 - .932 937 935 .933 .939 .941 .940 - 931 .930 .935 931 .941 .945
7 Fmt| .924 .930 - .930 .940 916 .907 .920 1939 .940 .953 .942 936 .953 941 .952 936 .940 941 952 .955
Em1t| .946 .950 953 .951 .954 942 - 918 .956 .959 .926 .950 .960 - .958 - .950 .953 .955 .958 961
Ml| .036 .032 .032 .032 .030 .044 .041 .033 .025 .025 .029 .024 .025 .028 .030 .031 .027 .028 .026 .024 .023
Smt| .893 901 - .892 .903 .894 - .896 903 .905 .904 .908 912 912 - .897 .906 .909 911 913 917
Fmt| .865 .876 - .863 .892 .810 .793 .818 .873 .878 905 .893 .873 901 .882 .899 904 905 .904 .908 910
o Emt| .928 .927 925 925 .937 901 - .892 .937 .938 919 .927 937 - 934 - 918 924 917 .938 .939
ML| .034 .031 .035 .035 .028 .047 .052 .037 .028 .027 .029 .025 .026 .029 .034 .033 .030 .028 .027 .026 .024
Smt| .921 924 - .924 927 923 - .920 922 927 .928 931 929 932 - 921 929 934 931 934 .936
Fmt| .915 .920 - .920 922 .902 .895 .900 918 924 933 923 922 941 .928 928 .907 921 911 .928 934
Em1t| .954 956 .953 .955 .955 947 - .953 956 .962 .956 .958 .964 - .956 - 938 .951 .947 951 .959
M| .028 .027 .028 .026 .025 .037 .036 .029 .026 .024 .025 .024 .023 .026 .025 .027 .031 .028 .033 .025 .023
Smt| .857 .858 - .865 .872 .870 - .865 .869 .870 .873 .871 .879 .881 - .865 .865 .874 .872 .878 .884
Fmt| .837 .839 - .849 .860 .830 .801 .829 .855 .858 .878 .862 .869 .882 .862 .884 .855 .858 .854 .877 .879
Em1t| .894 .896 901 916 913 .882 - .837 911 913 .870 .867 919 - 912 - .887 .902 .893 912 914
ML| .068 .067 .060 .062 .053 .074 .082 .061 .055 .054 .052 .052 .053 .054 .059 .058 .058 .053 .059 .051 .050
S Smt| .846 .853 - .849 .850 .858 - .850 .865 .865 .848 .855 .861 .865 - .848 .860 .866 .864 .865 .868
s Fmt| .783 .796 - .788 .813 .745 745 .756 811 .806 .829 .814 .796 .819 .794 .821 .803 811 .807 .816 .822
< Emt| .878 .888 .867 877 .891 .863 - .861 .902 .898 877 .887 .890 - .891 - .888 .883 .888 .891 .897
a M| .049 .050 .052 .049 .045 .061 .065 .058 .044 .043 .043 .042 .047 .045 .050 .051 .042 .045 .045 .043 .040

To provide an intuitive understanding of how the denoising
process refines the saliency prediction step by step, we present
a visualization in Fig. 6. This figure illustrates how our
proposed approach learns the location information, shapes,
and edges of salient objects in the first stage. Subsequently,
it utilizes the guided denoising model to refine the saliency
masks further, resulting in a more accurate segmentation of
the salient objects. This approach can be likened to first
locating the desired scenery and then segmenting its salient
objects. We believe that this step-by-step process closely aligns
with the functioning of the human visual system. Moreover,
integrating guided clues from the two control conditions is
seamlessly incorporated into the diffusion process using two
control adapters, further enhancing the effectiveness of our
approach.

To further demonstrate that the progressive denoising mech-
anism can enhance salient features, we provide visualizations.
As shown in in Fig. 7, for the green-object and horse examples,
as the time parameter T increases from 200 to 1000, the
boundaries of salient regions gradually clarify. Initially, noise
causes misclassifications (red-circled areas for the green object
and red-boxed area for the horse). But with iterative denoising,
the model filters out noise, making the salient objects’ contours
approach the ground - truth, thus validating the mechanism’s
effectiveness.

D. Component Evaluation

To validate the efficacy of our proposed components within
the RGB-D DiffSOD architecture, we conducted a compre-
hensive ablation study, the results of which are summarized
in Table III. Depth maps of ECSSD and PASCAL-S datasets

are generated by existing depth estimation methods (e.g.,
DepthFormer [56]). The baseline model, outlined in the first
row, utilizes a basic diffusion model that combines noise with
RGB-D data to generate a saliency map.

The effectiveness of the Structure Control Adapter (SCA,
Sec. [11-D2) is demonstrated in lines 2-5. When compared to
the baseline, incorporating the structure condition (SC, line
2) consistently enhanced all evaluation metrics. Further im-
provements were achieved by integrating Multi-Scale Feature
Embedding (MFE, line 3) into the appearance condition gener-
ation. A significant contribution was also made by the Copied
Denoising Encoder (E/, line 5), which was instrumental in
refining the diffusion and denoising stages, as evidenced by
the Fm metric on the NJUD test set improving from 0.898
to 0.918 (line 1 vs. line 5). The complete implementation of
SCA (line 4) yielded the best results.

The Appearance Control Adapter (ACA, Sec. III-D1) is
evaluated in lines 6-9. Incorporating the appearance condition
(AC, line 6) consistently improved all evaluation metrics
relative to the baseline. The inclusion of a CLIP image encoder
(CLIP, line 9) further enhanced the performance. Notably,
the Semantic Guidance Injection (SGI, line 8) proved vital
in steering the diffusion and denoising processes, with the
Fm metric on the NJUD test set increasing from 0.898 to
0.937 (row 1 vs. row 8). The full deployment of ACA (line
7) achieved the highest performance metrics.

As shown in lines 10-11, our Quality-Aware Filter (QAF,
Sec. 1II-C, line 11) outperformed the approach of directly
utilizing all depth maps (line 10). This was particularly evident
in metrics such as Sm on the PASCAL-S dataset, where
performance increased from 0.875 (line 10) to 0.884 (line 11).
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Fig. 6. Visualization of the denoising process with 1000 inference steps,
where T denotes the current step.

The advantage of the QAF lies in its selective use of high-
quality depth data, which prevents low-quality inputs from
compromising the detection process and ensures more reliable
saliency detection outcomes.

E. Ablation Study

1) Effectiveness of Threshhold o in Eq. 4: We conducted
an ablation study on the threshold o, a hyper-parameter that
determines the quality level of depth maps as described in
Eq. 4. We tested o values of 0.1, 0.2, 0.3, and 0.4, where
the reconstruction error is normalized between zero and one.
Depth maps of ECSSD dataset are generated by existing
depth estimation methods (e.g., DepthFormer [56]). Results
presented in Table I'V indicate that the model’s performance is
moderately sensitive to changes in 0. The optimal performance
was observed at ¢ = 0.2, while setting o = 0.1 resulted in
noticeable performance degradation. Conversely, a o of 0.4
led to a decrease in performance (e.g., .769 vs. .757 in the Sm
metric on the ReDweb-S set). This sensitivity can be attributed
to excessive loss of depth information at lower o values and
inclusion of low-quality depth maps at higher values, which
disrupts model training. Therefore, o = 0.2 is established as
the optimal setting to balance accuracy and efficiency.
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Fig. 7. Visualization of the progressive denoising process for salient feature enhancement.

TABLE III
QUANTITATIVE EVALUATION OF MAJOR COMPONENTS USED IN OUR APPROACH ON BOTH RGB-D BENCHMARK DATASETS NJUD, REDWEB-S AND
RGB BENCHMARK DATASETS ECSSD, PASCAL-S. THE BEST RESULTS ARE MARKED IN BOLD.

|<7Major Components

Datasets and Metrics

»l<
>

OA ACA A D

>
[g]

MFE

m
7
3]

CLIP | SGI | SmT | FmT | EmT | M!

Sm?

AA

Fm?! | Em? | M! Sm? | Fm! | Emt | M!

x

.908 | .898 | .909 | .042 | .740

744 | .801 | .133 | .921 | .918 | .929 | .041 | .859 | .846 | .897 | .072

.918 | .916 | .927 | .032 | .758

.755 | .807 | .119].924 | .937 | .944 | .032 | .866 | .856 | .906 | .059

925 | .923 | .927 | .027 | .747

.752 | .807 | .119 | .930 | .935 | .947 | .037 | .871 | .856 | .909 | .058

.931 | .925 | .932 | .026 | .764

.763 | .814 | .116 ] .939 | .945 | .955 | .027 | .878 | .864 | .911 | .053

921 | .918 | .925 | .028 | .751

.756 | .811 | .117 | .929 | .932 | .949 | .035 | .865 | .852 | .907 | .061

.926 | .919 | .925 | .032 | .752

.753 | .805 | .120 ] .928 | .935 | .947 | .031 | .865 | .853 | .907 | .055

.935|.934 | .935 | .023 | .763

.762 | .821 | .114 | .941 | .948 | .958 | .026 | .879 | .871 | .912 | .052

.933 | .931 | .932 | .024 | .762

.761 | .818 | .115].938 | .946 | .955 | .025 | .876 | .869 | .910 | .052

W 0 N ojlu A W N

1928 | .926 | .929 | .030 | .761

.761 | .814 | .116 | .937 | .943 | .953 | .027 | .867 | .862 | .906 | .055

LI EIRIEIEI RSRYRSAN S
U X[ % | x| x|/ V[V x
U x| x| x| x]|x| << x]|x
UYXR[( X[ x| X|| Vx| xX[x

=
(=)

.932 | .929 | .933 | .026 | .759

.764 | .818 | .115].939 | .942 | .950 | .027 | .875 | .869 | .908 | .053

YIS %| x| x| x|%x
Ll %| | x| x| x| x| %
RIS %[ || x| x| x| x| x|x

vViv | v |V

[y
[N

.938 | .937 | .938 | .022 | .769

.767 | .825 | .111 | .945 | .955 | .961 | .023 | .884 | .879 | .914 | .050

QAF: Quality-aware Filter
ACA: Appearance Control Adapter
SCA: Structure Control Adapter

AC: Appearance Condition
MFE: Multi-scale Feature Embedding
E’: Copied Denoising Encoder

SC: Structure Condition
CLIP: CLIP Image Encoder
SGI: Semantic Guidance Injection

TABLE IV
ABLATION STUDY ON THRESHHOLD o IN EQ. 4.
Sets ReDweb »
Metrics

760 |.758 | .815 .114|.938 |.949 .955.026
.769 | .767 | .825 | .111|.945 .955|.961  .023
.765|.766 | .819 | .112|.942 .952 | .957|.024
757 |.753 | .814 | .118 | .933  .943 | .951|.027

TABLE V
ABLATION STUDY ON MASKING RATIOS IN QUALITY-AWARE FILTER
(SEC. 111-C). “50%-90%” MEANS THE PROPORTION OF AREAS NOT

MASKED.

Sets ReDweb )
Metrics

0% 751 | .755 .814 .115].927 | .939|.950 | .025
60% 753 | .759 .819 .114|.936  .943|.953|.022

0% .765|.762  .823 | .112|.941 | .950  .958 | .021
80% .769 | .767 .825 .111|.945 .955 .961 .023
90% 742 | 745 .810v.117 .925 | .936 | .946 | .027

2) Effectiveness of Masking Ratio: To assess the impact of
masking ratios on the quality-aware filter (QAF, Sec. I1I-C),
we experimented with different ratios. Depth maps of ECSSD
dataset are generated by existing depth estimation methods
(e.g., DepthFormer [56]). As shown in Table V, A non-

masking ratio of 80% yielded the best performance across
nearly all metrics. Higher masking ratios can cause significant
information loss in even high-quality depth reconstructions,
while lower ratios may lead to model overfitting, as the
auto-encoder tends to memorize rather than learn meaningful
representations. Thus, a non-masking ratio of 80% effectively
balances the trade-off between preserving information integrity
and avoiding overfitting.

3) Effectiveness of Masked Auto-encoder: We further eval-
uated the robustness of our QAF (Sec. [11-C) through an abla-
tion study comparing three masked auto-encoder approaches:
MultiMAE [45], MAE [91], and MIM-Depth [92], as detailed
in Table VI. Depth maps of ECSSD dataset are generated by
existing depth estimation methods (e.g., DepthFormer [56]).
Although MultiMAE outperformed the other models in all
metrics, the differences were marginal, indicating that our
QAF maintains robust performance across various masked
auto-encoder frameworks.

4) Effectiveness of Semantic Guidance Injection: The se-
mantic guidance injection component in our DiffSOD frame-
work, as described in Sec. III-DI, plays a crucial role in
combining the semantic condition embedding and diffusion
embedding. It enables the model to learn the interaction
between the noise and semantic condition features, resulting in



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, NO.XX, XXX.XXXX

TABLE VI
ABLATION ON MASKED AUTO-ENCODERS IN QUALITY-AWARE FILTER
(SEC. 111-C).

ReDweb-S

Metrics
MIM-Depth I{EEB .818 | .114(.939  .951  .955 | .026
MAE 765 | .764 | .822  .112|.941 | .954 | .957 | .025
YN .769 | .767 | .825 | .111|.945 | 955 | .961 | .023
TABLE VII

ABLATION ON SEMANTIC CONDITION INJECTION. “OURS” DENOTES THE
COMPLETE SCI VERSION USED IN DIFFSOD.

ReDweb-S

Metrics
w/o Co-attention |/ RIV{ VN
w/o FFT, + MHA .765‘.763 .818 | .115
769 .767 .825 .111

.953 1 .028
-957 1 .025
.961 | .023

.938 | .942
941 .948
.945 | .955

Ours

a more robust representation. To substantiate its effectiveness,
we conducted experiments to assess the impact of different
components. Initially, we replaced the Fast Fourier Transform
(FFT) and Inverse Fast Fourier Transform (IFFT) with multi-
head self-attention (“w/o FFT, + MHA”). The performance
decline observed in Table VII demonstrates the importance
of converting the features into the Fourier space. This con-
version helps mitigate the domain gap between the noise and
semantic condition features in the Euler space. Furthermore,
we conducted experiments where the co-attention mechanism
was removed. The results showed a significant performance
decline. For instance, in the ReDweb-S dataset, the F-measure
dropped from 0.767 (line 3) to 0.760 (line 1). This decline
underscores the significant role of the co-attention mechanism
in addressing correlation and alignment issues between the
noise and semantic condition features.

5) Robustness to Noise: We evaluated our method’s robust-
ness to noise by adding Gaussian, random occlusion, and salt-
and-pepper noise to the DUT-OMRON (RGB) and ReDweb-
S (RGB-D) datasets. As shown in Fig. 8, our method con-
sistently achieved the best S-measure (Sm) and lowest Mean
Absolute Error (MAE) across all noise types, outperforming
other RGB saliency detection methods (like dCOD [42],
Mdiff [41], Prior [89], and UGLR [87]) on DUT-OMRON,
and RGB-D methods (like SSL [71], DIM [73], HTrans [32],
and CAT [33]) on ReDweb-S. While other methods showed
significant performance drops, particularly under salt-and-
pepper noise, our approach demonstrated strong resilience,
with minimal declines in Sm and slight mean absolute error
(MAE) increases. This indicates that our method effectively
handles complex noise and challenging scenes, especially in
RGB-D datasets where overall scores are typically lower.

6) Denoising Inference and Speed: We conducted an ab-
lation study to analyze the impact of different inference
settings during the denoising process. Reducing the number of
inference steps can be advantageous for practical applications
as it decreases GPU memory consumption and speeds up
the inference process. However, as shown in Table VIII,
while reducing the number of inference steps does increase
FPS (Frames Per Second), it also results in a significant

M dCOD W Mdiff ™ Prior ™ UGLR M Ours M dCOD W Mdiff ™ Prior ™ UGLR M Ours
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Fig. 8. Ablation study on different noises by adding Gaussian, random occlu-
sion, and salt-and-pepper noise to the DUT-OMRON (RGB) and ReDweb-S
(RGB-D) datasets.

TABLE VIII
ABLATION STUDY ON DIFFERENT INFERENCE SETTINGS AND INFERENCE
SPEED, T DENOTES THE INFERENCE STEP.

Sets D PASCA

Metrics
38.9|.924 931 .936 | .039|.859 | .852 .887 .065
345 .928>.939 .943‘.033 .868 | .861 | .895 | .062
30.8|.934  .943 | .950 | .029|.876 | .867 .899'.059
27.1|.939  .950 | .955 | .025].880 | .872 .909  .052
22.9 .945>.955 .961‘.023 .884 | .879 .914 .050

performance drop. Specifically, as the number of inference
steps (T) decreases, FPS increases from 22.9 to 38.9, but the
performance metrics decrease. In DiffSOD, although using
1000 inference steps results in increased inference time, it
significantly improves the performance across all metrics,
demonstrating that more inference steps are worthwhile in
scenarios where high accuracy is required. At the same time,
our model can achieve 38.9 FPS with only 200 inference
steps, making it feasible for real-world applications where
faster inference is prioritized. With further optimization, we
can continue to enhance the speed while maintaining good
performance.

7) In-depth Analysis between Unsupervised Methods Us-
ing Background Information: Unsupervised RGB-D saliency
detection methods, which utilize background cues as supple-
mentary information, encounter several limitations:

Firstly, unsupervised methods that use background as a
supplementary information source can be severely limited
by the complexity or variability of the background. These
methods may fail in scenes where the background and fore-
ground do not have clear contrasting features, leading to
inaccurate saliency detection. Secondly, relying on background
information primarily for salient object detection often results
in a lack of semantic understanding. This approach may
neglect important contextual and semantic cues that are crucial
for accurate identification and delineation of salient regions,
a gap that DiffSOD addresses through its innovative use
of saliency conditions and semantic optimization. Thirdly,
unsupervised methods may not generalize well across diverse
imaging conditions or different types of scenes due to their
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reliance on specific background characteristics. In contrast,
the denoising diffusion-based approach of DiffSOD, guided
by saliency conditions, offers a more adaptable and robust
framework for saliency detection across varied scenarios.

Our proposed visual saliency diffusion model addresses
these issues with its “noise-to-image denoising” approach,
enhancing robustness against background noise and ensuring
accurate detection even in challenging conditions. By intro-
ducing two specific control conditions — appearance and
structure — DiffSOD provides a controlled denoising process
that maintains the semantic relevance of salient objects. This
methodology offers a robust and adaptable framework for
saliency detection across varied scenarios, overcoming the
limitations of unsupervised methods.

F. Limitations

While the DiffSOD model shows promise for practical im-
plementation, it is essential to acknowledge the computational
challenges associated with its iterative nature. The increased
complexity of computations may pose limitations on real-
time applications, particularly in resource-constrained environ-
ments or scenarios requiring rapid processing. Furthermore,
diffusion-based models tend to smooth out image details and
edges during denoising. While this effectively reduces noise,
it can result in a loss of fine texture and sharpness in the
denoised image. Striking a balance between noise reduction
and preserving important structural details remains challenging
for diffusion models.

V. CONCLUSIONS

This paper presents a novel and unified approach to visual
saliency detection by adopting a noise-to-image denoising
perspective applicable to both RGB and RGB-D salient object
detection. The proposed Visual Saliency Diffusion model
(DiffSOD) leverages a denoising diffusion-based framework
to predict saliency while effectively preserving spatial interac-
tions between pixels. Additionally, we incorporate two distinct
control conditions to guide the denoising process, enhancing
the accuracy and detail of the saliency maps. Experimental
results demonstrate the superior performance of our model
compared to existing visual saliency detection methods on
benchmark datasets for both RGB and RGB-D SOD tasks.

Looking ahead, our framework introduces a fresh paradigm
for diffusion-based dense prediction models and provides a
new perspective in visual saliency detection. Future research
can focus on adapting our model to handle diverse noise types
and integrating additional visual conditions to improve the
denoising learning process further.
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