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Adapting Generic RGB-D Salient Object Detection
for Specific Traffic Scenarios

Chenglizhao Chen , Mengke Song , Shanchen Pang , and Chong Peng

Abstract— Existing RGB-D salient object detection (SOD)
models are primarily trained on general-purpose datasets, which
may lead to domain shift issues when applied directly to
new, specific scenes, such as stereo traffic datasets. Though
“large-scale datasets (COME15K and ReDweb-S)” have been
released, they only partially address the domain shift problem.
From the perspective of data augmentation, this paper presents
a novel solution, which follows a weakly-supervised way to
adapt generic RGB-D SOD models for specific scenarios, with
a focus on traffic scene imagery. Our key idea is to equip
plain videos (specific scenarios, i.e., traffic scenes) with newly
estimated saliency informative depth maps and pseudo-SOD GTs,
enabling them to support the retraining of existing RGB-D
SOD models for meeting the requirements of these specific
scenes. To achieve this, we offer a fresh perspective on how
depth information can be leveraged in the SOD task and
introduce a new paradigm for extracting intrinsic information
from optical flows derived from videos to refine RGB-D SOD
models. Our method achieves a 1.2% improvement in F-measure
on RGB-D datasets and a 27% enhancement on real-world
street view datasets compared to baseline models. These results
demonstrate the effectiveness of our approach in enhancing
model adaptability for traffic scene imagery, even with limited
target domain data. Codes, datasets, and results are available at
https://github.com/MengkeSong/AGSS.

Index Terms— RGB-D salient object detection, domain shift,
deep learning, traffic image SOD.
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I. INTRODUCTION

IMAGE salient object detection (SOD) aims at detecting
and segmenting objects which attract human attention most

visually in a given scene, which is significant to downstream
visual tasks such as, image retrieval [1], image segmenta-
tion [2] and driving activity [3], [4], [5], [6], [7]. Most existing
works [8], [9], [10] have mainly focused on SOD for RGB
images. With the rising popularity of depth (D) sensing equip-
ment, RGB-D SOD has received intensive research attention
recently. The newly available D can provide additional infor-
mative clues for potentially separating salient objects from
non-salient surroundings. Such successful separation might
never have been achieved if only RGB had been considered.

The rapid advancement of deep learning has facilitated
the development of several RGB-D SOD models, such as
those proposed in [12] and [13], which are trained on large,
well-annotated datasets designed for general-purpose use.
As illustrated in Fig. 1-A, these models generally perform well
when tested on datasets similar to the ones they were trained
on. However, a key challenge arises when such models are
tested on unfamiliar RGB-D scenes. For example, a model
trained on the NJUD-TR dataset [11], which predominantly
contains natural scenes, performs poorly when applied to
stereo traffic scenes, like those in the KITTI dataset [14]
(shown on the right side of Fig. 1). This performance drop
highlights a typical domain shift problem, where large dif-
ferences between the source domain (natural scenes) and the
target domain (stereo traffic scenes) hinder model generaliza-
tion, as illustrated in Fig. 1-B.

The domain shift problem has been studied in various
computer vision domains [15], [16], but it remains largely
unexplored in the field of SOD, especially for multi-modal
inputs like RGB-D images. Domain shift in SOD is par-
ticularly challenging because traffic scenarios, which often
feature dynamic and cluttered environments, can drastically
differ from the natural or indoor scenes seen in many existing
training datasets. This gap in data characteristics makes it
difficult for deep learning models to generalize effectively
when tested in real-world traffic conditions.

One of the most intuitive approaches to address domain
shift is to automatically generate large-scale, domain-specific
training datasets. However, this is especially challenging for
the RGB-D SOD task due to two main issues. First, obtaining
RGB-D images is inherently difficult, as most publicly avail-
able images contain only RGB data without accompanying
depth information. This problem is even more pronounced in

1558-0016 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: China University of Petroleum. Downloaded on April 07,2025 at 23:55:15 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9982-5667
https://orcid.org/0000-0001-9618-0656
https://orcid.org/0000-0002-5705-1218
https://orcid.org/0000-0003-0003-5126


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Our approach highlights that an RGB-D SOD method trained on
“common scenes” (e.g., NJUD-TR [11]) performs well on similar datasets
(A) but struggles with specific scenes (B), such as stereo scenes in KITTI,
due to domain shift. From a data augmentation perspective, our method
(C) generates high-quality SOD ground truths and informative depth maps for
video data, allowing us to use large amounts of plain video data from similar
scenes to retrain state-of-the-art RGB-D SOD models, thereby mitigating the
domain shift issue.

Fig. 2. NOT all information in a depth (D) map is useful for SOD. Thus,
our goal is to generate saliency informative D maps without considering the
goals targeted by the conventional D estimation task, e.g., correct D layout,
and rich details. The main reasons are two-fold. 1) Though it is still not sure
if the D layout (f) can benefit the SOD task, we feel confident that a D map
provides “layer-separable clues” (e) for the SOD network to separate salient
objects from their non-salient surroundings. 2) Though optical flow maps
(b) are physically irrelevant to real D maps, our newly-obtained saliency
informative D maps (d) can well benefit the SOD task because moving
objects tend to be salient.

traffic scenarios, where the availability of high-quality RGB-
D datasets is limited. Second, SOD is a dense prediction task
that requires pixel-wise saliency annotations, which are costly
and time-consuming to generate. Existing auto-annotation
techniques [17], [18] often produce pseudo-annotations of low
quality, further complicating the problem.

To address the challenges mentioned, we propose a novel
approach to automatically construct a high-quality trainable
RGB-D dataset using “VIDEO” data alone. As illustrated in
Fig. 1-C, we leverage the complementary spatiotemporal infor-
mation present in videos to generate high-quality pseudo-GTs.

In parallel, we use layer-separable clues (shown in Fig. 2-e)
that are embedded in the video’s temporal domain, specifically
optical flow (Fig. 2-b), to enhance the RGB frames with
depth information. In other words, we enrich each RGB video
frame with a saliency informative depth map using the optical
flow. Since objects with noticeable movement typically have
higher saliency than static objects (Fig. 2-b and c), we use
these motion-based saliency clues to create depth-like maps
for RGB-D SOD model training, even though these maps do
not represent true physical depth. Unlike conventional depth
estimation methods that aim to generate accurate depth maps,
our approach focuses on creating saliency-informed depth
maps, as not all aspects of conventional depth maps, such
as the depth layout (Fig. 2-f), are relevant for the SOD task.
By using motion-based saliency, we ensure that the generated
depth maps are more useful for saliency detection, even if they
do not correspond to real-world depth values.

Any RGB-D SOD models can be easily upgraded with
newly and automatically constructed video-based training data
generated using our approach. This makes our method both
generic and practical. It should be emphasized that our newly
augmented trainable video data not only enhances state-of-
the-art RGB-D SOD models in new, specific scenarios, such
as the real-world stereo datasets BDD [14], KITTI, and
CityScapes [19], but also delivers significant performance
improvements on common scenes, as demonstrated on the
seven widely-used RGB-D SOD benchmark datasets.

In summary, the contributions of this paper can be summa-
rized in the following aspects:

• As the first attempt, we have presented a data augmen-
tation method to adapt off-the-shelf SOTA RGB-D SOD
models to perform well on unfamiliar RGB-D scenes and
provided a novel insight towards handling the domain
shift problem in the SOD task;

• We have explored how depth information could serve
the learning when performing the RGB-D SOD task and
proposed a simple yet effective approach to generate
saliency informative depth maps;

• We have taken full advantage of videos’ spatiotemporal
information to generate high-quality SOD pseudo-GTs;

II. RELATED WORK

A. RGB-D Salient Object Detection

Traditional RGB-D SOD methods [20], [21] focus on hand-
crafted low-level features and thus struggle to handle complex
scenes. To address this limitation, deep learning-based meth-
ods have emerged. These fusion-wise models fuse RGB and
depth images in different stages, meanwhile extract high-
level representations [22], [23], [24], [25], [26], [27] and
obtain multi-scale features from different levels [28], [29] to
improve the performance, which can be categorized into early
fusion [30], [31], late fusion [32], [33], and mid fusion [34],
[35], [36], [37], [38], [39]. Moreover, large-scale datasets like
ReDweb-S [40] and COME15K [41] have been proposed
to alleviate the issue of limited training data. Nonetheless,
even with these large datasets, existing methods struggle to
achieve satisfactory results in novel scenarios with domain

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: China University of Petroleum. Downloaded on April 07,2025 at 23:55:15 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ADAPTING GENERIC RGB-D SOD FOR SPECIFIC TRAFFIC SCENARIOS 3

Fig. 3. Our method pipeline has three stages. Starting with retrieved video data, we extract optical flow maps, which generate saliency informative depth
(SID) maps in (PART1) and high-quality pseudo-ground truths (pseudo-GTs) in (PART2). These enhanced representations augment the video data, allowing
fine-tuning of a state-of-the-art (SOTA) RGB-D salient object detection (SOD) model. In (PART3), this refined model addresses domain adaptation challenges,
ensuring strong performance in new, unseen scenes.

Fig. 4. We visually demonstrate the advantages of our saliency informative
depth maps (SID) over monocular estimated depth (MED) on specific scenes.
While our SID (column #4) lacks the detailed depth layouts of conventional
monocular depth estimation (column #3), it still performs well in RGB-D SOD
tasks. This is because it effectively utilizes layer-separable cues (Fig. 2-e) to
distinguish between salient objects and non-salient backgrounds.

shift issues. Thus, we aim to improve performance in these
specific scenarios by retrieving video data with similar scenes
from a data perspective without modifying the architecture of
state-of-the-art models.

B. Weakly Supervised RGB-D Saliency Detection

Since annotating pixel-wise masks is arduous and time-
consuming, existing weakly-supervised methods mainly obtain
saliency from low-cost annotations, i.e., bounding-boxes [42],
image-level labels [43], scribbles [44], and noisy labels [45].
For example, [43] adopted an iterative learning strategy to
update an initial saliency map generated from unsupervised
saliency methods by learning with image-level supervision.
Reference [45] proposed a noise-robust adversarial learn-
ing framework to avoid error-prone predictions generated
by pseudo-label noise. Reference [42] iteratively refined the
predicted pixel-level pseudo-GT saliency maps with saliency
bounding boxes. Reference [44] proposed a prediction consis-
tency training method and an active scribble-boosting strategy
to provide extra supervision signals with negligible annotation
cost. Reference [46] leveraged unlabeled RGB images to
generate depth to boost RGB-D saliency detection.

Differently from these approaches, we utilize video data,
incorporating optical flow to enhance RGB-D SOD perfor-
mance in novel specific scenarios.

C. Optical Flow-Guided Depth Estimation

Optical flow, a fundamental tool in video processing, cap-
tures the motion of objects between frames, offering vital

information for distinguishing between static and dynamic ele-
ments. This motion data is inherently layer-separable, making
it a robust feature for generating depth maps that high-
light moving objects. Traditional monocular depth estimation
methods often emphasize producing rich layouts and highly
detailed depth maps, which may not be optimal for certain
downstream tasks, such as RGB-D salient object detection
(SOD). For example, Kopf et al. [47] proposed Robust Con-
sistent Video Depth Estimation (RCVD), which ensures robust
depth maps under noisy conditions but lacks motion segmen-
tation capabilities, making it less effective for distinguishing
dynamic elements. Xu et al. [48] introduced a Unified Flow,
Stereo, and Depth Estimation framework that excels in fea-
ture matching but is not optimized for saliency detection.
Shimada et al. [49] focused on real-time flow-to-depth estima-
tion for drones but struggled with separating moving and static
objects. Guo et al. [50] developed F2Depth for low-texture
indoor scenes, yet it performs poorly in dynamic settings,
while Guizilini et al. [51] introduced DRAFT for joint optical
flow and depth learning but lacks saliency prioritization.
Lu and Chen [52] tackled dynamic object segmentation using
joint depth and flow estimation but without leveraging cross-
stream refinement.

On the contrary, our proposed method integrates optical flow
and RGB streams through dense connections and boundary
supervision, effectively separating dynamic and static objects
to generate saliency-aware depth maps. This focus on retain-
ing salient motion cues and precise boundary segmentation
gives our method an edge in distinguishing dynamic objects
compared to existing methods.

D. Domain Shift

The domain shift issue arises when there are differences
and gaps between the distributions of the source and target
domains. To address this challenge, current methods [15],
[16] typically employ domain adaptation techniques, which
can be categorized into sample adaptation, feature adaptation,
and model adaptation. Recent works in object detection [53],
[54], semantic segmentation [55], and depth estimation [56]
have introduced strategies such as domain-adversarial training,
self-training, and contrastive learning to improve generaliza-
tion across domains. These techniques have proven effective
in handling domain shifts in various visual tasks, offering
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Fig. 5. Visual demonstrations to show the advantages of our SID over other
MED [60] on normal scenes.

potential insights for RGB-D SOD tasks. However, these
approaches generally focus on adapting source knowledge
to the target domains, while incremental learning [57], [58],
[59] — a lifelong learning method — emphasizes maintaining
performance on the source domain while incorporating new
concepts from the target domain without forgetting previously
learned ones.

Unlike other tasks, RGB-D SOD faces additional challenges
from depth information, which makes domain adaptation
harder due to variations in scene geometry and sensor noise.
Our approach, which uses video data and optical flow, aims
to bridge this domain gap by providing scene-specific data
without altering the architecture of SOTA models. This makes
it particularly valuable for scenarios with limited target domain
data, improving the robustness and adaptability of models in
real-world applications.

III. THE PROPOSED METHOD

A. Method Pipeline

Our approach aims to enhance the performance of state-of-
the-art RGB-D models in specific new scenes by leveraging
plain video data (without depth or pixel-wise SOD ground
truth). The overall method pipeline is depicted in Fig. 3, which
consists of three main parts — PART1: Given a plain video,
this part generates saliency informative depth maps (SID).
The SID utilizes layer-separable clues from optical flow maps
to improve conventional depth estimation, making it highly
informative for the SOD task. However, this comes at the cost
of losing some depth-related details. PART2: This part fully
exploits the complementary spatiotemporal information from
the video to generate high-quality SOD pseudo-GTs. We pre-
generate a large number of pseudo-GTs, but only retain a few
frames with high-quality labels. These high-quality pseudo-
GTs are then used for training the SOD network. PART3:
Now that the video data is enriched with SIDs and pseudo-
GTs, this part addresses the domain shift problem by using
these enhanced video inputs to improve performance in novel
scenes.

By clearly separating these stages, our method efficiently
handles domain shift issues and boosts model performance in
specific new scenes, all without altering the architecture of
existing SOTA RGB-D models.

Fig. 6. The Optical Flow-guided Depth Network enhances the state-of-the-art
MiDaS [60] method by adding optical flow maps as an additional stream,
integrated with the RGB stream through early dense connections. We use
boundary ground truth from high-quality optical flow for supervision. Our
saliency informative depth maps (SID) focus primarily on salient cues rather
than the complete depth layout.

B. Generate Saliency Informative Depth

It is well known that optical flow has been widely used in
various video-related tasks to sense motions, which provides
informative clues to separate moving objects from other static
ones. A qualitative demonstration of ‘Optical Flow’ can be
seen in Fig. 4 and 5.

Our first objective is to obtain video-correlated D maps to
make video data applicable for SOTA RGB-D SOD models’
training. However, conventional monocular depth estimation
approaches [61], [62] mainly focus on generating depth maps
with good layout and rich details, which might not be nec-
essary for RGB-D SOD task (see Fig. 2). Noticed by the
distinct attribute of optical flow maps (see Fig. 4 and 5) —
very informative in providing layer-separable clues since they
can well highlight moving objects, it is technically appropriate
to use them to facilitate depth estimation in SOD task.

To enable a generic application, we propose to enhance
the existing monocular depth estimation approach to gener-
ate saliency informative depth maps (SID) via optical flow
maps (PART1 of Fig. 3). As is shown in Fig. 6, our approach,
coined as Optical Flow-guided Depth Network (OFDNet),
is based on the SOTA monocular depth estimation method
MiDaS [60]. The major difference is that our OFDNet focuses
on retaining the informative layer-separable clues provided
by optical flow maps. Layer-separable clues refer to features
extracted from optical flow maps that help distinguish moving
objects from static backgrounds, essential for saliency detec-
tion. By highlighting object boundaries and motion dynamics,
these clues enable models to focus on significant motion
aspects rather than comprehensive depth layouts. This empha-
sis allows for better identification of salient objects, as the
distinct motion patterns of these objects enhance the model’s
differentiation between salient and non-salient areas.

First, we generate optical flow maps for each frame using
the off-the-shelf RAFT [64] model, which captures motion
information by highlighting layer-separable clues, such as
moving objects and their boundaries. Next, we develop a
bi-stream network based on MiDaS, where the RGB stream
follows the depth estimation model (e.g., MiDaS [60]), focus-
ing on extracting detailed depth information from static scenes.
Simultaneously, the optical flow stream processes motion
cues through a U-Net, which specializes in capturing bound-
ary information related to moving objects. To enhance the
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Fig. 7. Pipeline illustration of Pseudo-GT Generator. We have devised a three-stage process to mine high-quality Pseudo-GT. Stage 1 aims at assigning
quality labels of optical flow maps to train quality filter (QF). Stage 2 is the training phase of QF, which is the key to obtaining high-quality Pseudo-GT.
Stage 3 utilizes the complementary spatiotemporal status of videos to generate high-quality Pseudo-GT. Specifically, we use saliency similarity (SS) to measure
the spatiotemporal consistency between color saliency and motion saliency, ensuring that the generated Pseudo-GTs are aligned with both visual and motion
cues. Further, we apply CRF [63] operation after obtaining initial Pseudo-GT to acquire sharper ones.

interaction between the two streams, we establish dense early
connections, where intermediate features from MiDaS are
passed to corresponding layers in the U-Net via a Concate-
nation + Convolution operation. This allows the U-Net to
leverage depth information while refining its boundary detec-
tion. Finally, the outputs from both streams are fused through
a simple average (AVG) operation, resulting in saliency
informative depth (SID) maps that emphasize salient regions
and objects in the scene, improving depth estimation for
video-based tasks. The overall dataflow of OFDNet can be
formulated as follows:

O(Ii , OFi ) = AVG(MSI(Ii ), UNet(MSI(Ii ), OFi )), (1)

where I is the input RGB frame, OF is the corresponding
optical flow, AVG is an average operation, MSI denotes
the SOTA depth estimator MiDaS [60], and O represents
our OFDNet. Notice that, compared with the conventional
monocular depth estimation MiDaS, our SID can provide more
discriminative information to separate salient objects from
their non-salient surroundings (see Fig. 4), and thus it has
the potential to facilitate the RGB-D SOD task better.

During training, the two streams utilize individual loss func-
tions. As shown in Fig. 6, the U-Net stream takes the optical
flow-based Canny boundary maps as supervision, in which we
use the typical binary cross entropy loss (Lbce) for training.
The MiDaS stream takes real depth maps for supervision, and
we use the classic Log-mse loss (Llog) and intersection over
union loss for training Liou . Thus, the overall loss function
(Lall ) can be expressed as:

Lall = Lbce + Llog + Liou . (2)

We have trained our OFDNet on the KITTI training
set. Unlike conventional approaches that utilize optical flow
for dense depth refinement [60], our OFDNet leverages
optical flow maps specifically to enhance salient region accu-
racy, making it a task-specific enhancement rather than a
general-purpose refinement. To highlight the generic nature
of our method, we have only employed the simplest network
architecture here. A more sophisticated network architecture
with appropriate loss functions may potentially yield further
performance improvements. However, to stay focused on the

main topic, we suggest leaving this as a direction for future
research.

C. Generate High-Quality Pseudo-GT

We can easily obtain high-quality SID of the given plain
video sequence using the abovementioned OFDNet. However,
to make video data trainable for RGB-D SOD models, we are
still short of pixel-wise SOD ground-truth (GT).

To solve this problem, we present a feasible way to gen-
erate high-quality Pseudo-GT (PART2 of Fig. 3). As shown
in Fig. 7, our pseudo-GT generation includes three stages:
1) stage 1 assigns optical flow maps with binary quality labels,
i.e., high-quality (1) or low-quality (0), 2) stage 2 trains the
newly-devised quality filter (QF), and 3) stage 3 uses videos’
complementary spatiotemporal status to generate pseudo-GT,
where QF is the key to ensure the quality of the generated
pseudo-GT.

The primary objective of stage 1 and stage 2 is to obtain
the QF to exclude low-quality optical flow maps because it is
almost infeasible to ensure the pseudo-GT’s quality when the
frame’s optical flow is low-quality. Thus, in our pseudo-GT
generation process, only the frames with high-quality optical
flow maps are considered. The proposed QF is a typical binary
classifier, which takes optical flow as input, followed by a
pre-trained feature backbone (ResNet50), then a multi-layer
perceptron (MLP) outputting either 1 (high-quality) or 0 (low-
quality). To train QF, we propose a method to automatically
label the quality of optical flow maps using saliency similarity
(SS).

The rationale of SS is based on the fact that a high-quality
optical flow map usually correlates to high-quality motion
saliency, where the motion saliency can be easily obtained by
feeding the optical flow map to any off-the-shelf RGB SOD
model.1 Therefore, we can directly measure the consistency
degree between the motion saliency (MS) and real saliency
GT to reveal the quality degree of the optical flow map,
where we call this consistency measuring process between the
two saliency maps as SS. The SS process can be detailed as

1We simply choose the EDN [65], which was trained on SOD datasets
without equipping D (i.e., DUTS [43]).
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Fig. 8. Rationale demonstration of Pseudo-GT Generator. There are
4 cases when generating Pseudo-GTs, i.e., ‘high/low-quality optical flow +

strong/weak color saliency (CS) and motion saliency (MS) consistency’. Since
the low- and strong- combination is very rare in practice, we have omitted
it. Only the high- and strong- case (the 1st row) can ensure a high-quality
Pseudo-GT.

follows:

SS(MSi, GTi) =

 1, i f Sm(MSi , GTi ) − γ > 0

0, otherwise,
(3)

where MSi and GTi are the motion saliency and GT of
the i-th frame, γ is a pre-defined hard threshold, and Sm
means S-measure [66] which measures the structure similarity
between its two inputs. In stage 1, using the equation men-
tioned above, we automatically assign a binary label to each
training frame to indicate its optical flow quality. The optical
flow quality label reflects the accuracy and reliability of the
optical flow map for the given frame. Then, in stage 2, we train
the QF on the newly-labeled optical flow data. To train QF,
we simply use DAVIS set [67] because all video frames in
this set have been equipped with pixel-wise SOD GT.

In stage 3, we utilize trained QF to facilitate pseudo-GT
generation. The most intuitive way to generate pseudo-GT
for video data is to perform the average operation on color
saliency and motion saliency, where the color saliency can
be obtained similarly to the motion saliency, i.e., input an
RGB frame into an off-the-shelf SOD model. However, the
pseudo-GTs generated by such a naive method are not always
high-quality. Thus, stage 3 follows an innovative methodology
to handle the problem, ensuring all obtained pseudo-GT are
high-quality.

Our approach is based on the common attribute of the
abovementioned average operation-based high-quality pseudo-
GTs: 1) with high-quality optical flow and 2) with strong
consistency between color and motion saliency. It implies that
a pseudo-GT satisfying both items is likely to be high-quality.
We have provided a visual demonstration in Fig. 8 for a better
understanding.

As shown in the right part of Fig. 7, given new video
data (without GT), only those frames with high-quality optical
flow maps (via QF) are fed into the SOTA SOD model
to produce color/motion saliency. However, since there exist
massive cases in frames with high-quality optical flow maps,
they are still incapable of obtaining high-quality pseudo-GT
(e.g., the 3rd row of Fig. 8). Therefore, we only retain those

frames with high-quality optical flow maps and exhibit strong
consistency between their color and motion saliency (e.g., the
1st row of Fig. 8) as final pseudo-GTs. Specifically, we again
employ SS to compute the similarity between motion and color
saliency.

In short, given a video sequence, only those frames with
non-negative ‘pseudo-GT scores’ will be retained, where the
“pseudo-GT scores (pGTscore)” can be computed by the
following equation:

pGTscore = QF(OFi) × SS(CSi, MSi), (4)

where OF means optical flow maps, while MS and CS denote
motion and color saliency, respectively. Specifically, the γ

value here is set to the same as the abovementioned hard
threshold (Eq. 3). Following the common thread, we employ
CRF [63] to refine the obtained pseudo-GTs for slightly better
quality.

D. Target Domain Adaption

As previously mentioned, existing state-of-the-art (SOTA)
RGB-D SOD models are primarily trained on datasets fea-
turing common scenes. Due to the domain shift issue, these
models struggle to perform well in new, specific scenes (as
illustrated on the right in Fig. 3). However, leveraging the
methods introduced in PART1 and PART2, we can effectively
adapt the target domain (training set with domain shift issues)
to the source domain (testing set with new specific scenes).
This is done by using a small set of images from the new
specific scenes to retrieve a large amount of video data with
similar scenes, and then applying our proposed approach
to equip some of this data with high-quality pseudo-GTs
and saliency-informed depth maps. Finally, we can use these
newly generated trainable video data to re-train the RGB-D
SOD models, effectively addressing the domain shift issue,
as described in PART3.

Technically, given a SOTA RGB-D SOD model, we com-
bine its original training sets with our newly generated
video-based training set and re-train the model on this com-
bined dataset. All other training settings remain the same as
the default choices. While there are ways to accelerate the
re-training process, achieving similar quantitative results with
reduced computational cost, this topic is beyond the main
scope of this paper and will be explored in future work. The
detailed procedure of the entire method can be found in the
pseudocode (Algorithm 1).

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Training Sets: Our training datasets consist of two
groups.

The 1st group consists of the original training sets of the
targeted baseline models (4 top-tier SOTA models selected
as targeted baseline models, e.g., LAFB [68], SPNet [69],
SSL [70], and C2DF [71]) and our newly augmented trainable
video data with common scenes of SOD cases. We evaluate
the effectiveness of our approach on nine widely-used pub-
lic benchmark datasets, e.g., DUT-RGBD [72], NJUD [11],
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TABLE I

QUANTITATIVE EVALUATION OF MAJOR COMPONENTS USED IN OUR APPROACH. THIS EXPERIMENT ADOPTS C2DF AS THE BASELINE

MODEL AND FULL DESCRIPTIONS REGARDING MARKS FROM 1⃝ TO 5⃝

NLPR [73], SIP [74], SSD [75], LFSD [76], STEREO [77],
COME15K-E [41] and ReDweb-S [40]. The plain video
data are collected from HMDB51 [78], UCF101 [79], GOT-
10K [80], VOT2020 [81] and DAVIS (with real GT), totally
8K images (called Video8K).

The 2nd group of our datasets includes the original training
sets of the targeted baseline models and our newly aug-
mented trainable video data, sourced from specific scenes that
present domain shift challenges, such as BDD, KITTI, and
CityScapes. Specifically, we selected 2,000 images from BDD,
allocating 1,400 for training and 600 for testing, along with
600 images from the KITTI testing set and 855 images from
the CityScapes testing set for evaluation. BDD offers diverse
driving scenarios with variations in weather, time of day, and
urban environments, though it underrepresents rare events and
extreme conditions. KITTI provides high-quality annotations
in urban and highway settings but is limited to daytime and
clear weather conditions from a single geographic location.
CityScapes focuses on semantic understanding with detailed
pixel-level annotations across multiple German cities, yet it
encompass a variety of weather conditions, different times of
the day, and urban traffic patterns. The depth maps for all
augmented training and testing data are generated using our
proposed approach, ensuring consistency. Additionally, ground
truth (GT) maps for training data are produced by our method,
while those for the BDD, KITTI and CityScapes testing sets
are newly labeled using the Tobii eye-fixation capturing device
to accurately identify real salient objects and regions.

2) Evaluation Metrics: To perform quantitative evaluation,
we have adopted 4 commonly-used evaluation metrics, includ-
ing the F-measure value (Fm) [82], the E-measure (Em) [83],
the mean absolute error (M), and the structure measure value
(Sm) [66]. Notice that the values of Fm, Em, and Sm are the
larger, the better, while the value of M is smaller, the better.

B. Implementation Details

We implement our method using PyTorch on an NVIDIA
GeForce RTX 3090 GPU. In the training phase, hyper-
parameters such as initial learning rate, optimizer, weight
decay, and input image size are all the same as targeted mod-
els. For a fair comparison, we train the targeted model from
scratch using the same batch size with different composite
datasets, which will degrade model performance slightly.

In addition, we also adopt a horizontal flip and random
cropping method for data enhancement in the same setting
as the targeted models. The inferring speed is also consistent
with the targeted models, e.g., C2DF of 78 fps. The hyper-
parameter γ in stages 1 and 3 of PART2 are empirically set
as 0.85. The ablation study is shown in Table V-B.

C. Component Evaluation

We have conducted an extensive component evaluation to
verify the effectiveness of major components used in our
approach, and the quantitative results can be seen in Table I.
The 1st row denoted by mark 0⃝ is the baseline model (C2DF).
The effectiveness of saliency informative depth (SID) towards
RGB-D SOD model’s training can be easily observed by mark
1⃝. Compared with optical flow-based gray maps (convert the

optical flow to grayscale directly), our SID can persistently
improve all metrics, e.g., the Fm metric has been enhanced
from.901→.918 in NJUD testing set (line 2 vs. line 6).

The effectiveness of using generated Pseudo-GT for RGB-
D SOD model training has been shown by mark 2⃝, in which
QF and SS are two key components to exclude frames
with low-quality optical flow. By comparing lines 8 and
12, the MAE (M) metric in NJUD has been decreased
from.035→.031, showing the effectiveness of our QF and SS
to generate high-quality Pseudo-GT.
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TABLE II
QUANTITATIVE COMPARISON WITH CURRENT SUPERVISED SOTA RGB-D SOD MODELS. OUR APPROACH IS WEAKLY-SUPERVISED, WHICH CAN

PERSISTENTLY IMPROVE TARGET SOTA MODELS SIGNIFICANTLY. WE HAVE TESTED OUR APPROACH OVER 4 TOP-TIER SOTA MODELS, i.e.,
LAFB, C2DF, SSL, AND SPNET; TARGET MODELS PROMOTED BY OUR APPROACH (VIDEO8K) ARE DENOTED BY *. THE TOP-2 RESULTS

ARE MARKED IN RED AND BLUE

As denoted by mark 3⃝ and 4⃝, the advantage of our SID
(line 12) against the naive optical flow-based graying (line 2)
and the top-tier monocular RGB estimated D (MED) [60]
(line 11) can be easily observed, e.g.,.865 vs. .871 regarding
Sm in LFSD (line 12 vs. 11). The reason is also quite clear,
i.e., MEDs are mainly established from color information,
which could be somewhat redundant when performing RGB-D
fusion.

Also, the mark 5⃝ illustrates the performance gap
between models trained using {real-GT (DAVIS)} + {Pseudo-
GT (plain videos)} and models trained using {Pseudo-GT
(DAVIS+plain videos)} solely. As indicated by numeric
results in lines 7 and 8, using real-GT could bring better
performance as expected. Yet, such an advantage is marginal,
which further shows the effectiveness of our approach to
generating Pseudo-GT.

D. Comparisons With SOTA RGB-D SOD Methods

Our extensive experiments include two parts. For the first
part, to prove the effectiveness of our approach in common
scenes of SOD cases, we have compared our method on
four targeted baseline models against the 17 most recent
SOTA RGB-D SOD models over 9 widely-used RGB-
D SOD datasets. The SOTA models include S2MA [84],

TABLE III
QUANTITATIVE COMPARISONS BETWEEN FOUR TRAINING SETS

ON THREE REAL-WORLD TESTING SETS, BDD, KITTI AND
CITYSCAPES [19]. THESE BASELINE TRAINING SETS ARE THE

TARGETED SOTA MODELS’ ORIGINAL TRAINING SETS, AND
THE EXPERIMENT TAKES C2DF AS THE TARGETED MODEL

A2dele [85], D3Net [74], UCNet [86], ICNet [87], DCF [88],
BBS [89], CIRNet [90], MP [91], LSNet [23], MIRV [92],
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Fig. 9. Visual comparison between our method (based on C2DF) and several most representative SOTA models regarding specific scenes (A) and normal
scenes (B).

Fig. 10. Visual comparison of normal scenes (w/o optical flow) and specific scenes (BDD and KITTI sets) between three selected target SOTA models
(denoted as C2DF, SSL, and SPNet) and their updated versions trained by our newly augmented sets (denoted as C2DF*, SSL*, and SPNet*).
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Algorithm 1 Pseudocode for Domain Adaptation of RGB-D
SOD in Traffic Scenarios

1: Part 1: Generate Saliency Informative Depth (SID)
2: Step 1: Generate Optical Flow Maps
3: for each frame Ii in video sequence do
4: Compute optical flow OFi using RAFT model.
5: Save OFi for further processing.
6: end for
7: Step 2: Depth Estimation Using MiDaS
8: for each frame Ii in video sequence do
9: Apply MiDaS model to Ii to get static depth map Di .

10: end for
11: Step 3: Motion Boundary Extraction Using U-Net
12: for each optical flow map OFi do
13: Apply U-Net to OFi to extract boundary information Bi

related to moving objects.
14: end for
15: Step 4: Combine Static and Motion Information
16: for each frame Ii do
17: Concatenate depth map Di from MiDaS with boundary infor-

mation Bi from U-Net.
18: Perform convolution operation on concatenated features to

combine depth and motion data.
19: Average the outputs from both streams to produce the final

Saliency Informative Depth (SID) map:

SIDi = AVG(Di , Bi )

20: end for
21: Part 2: Generate High-Quality Pseudo-GT
22: Step 1: Assign Quality Labels to Optical Flow Maps
23: for each optical flow map OFi do
24: Calculate motion saliency MSi using an off-the-shelf RGB

SOD model (e.g., EDN).
25: Compute saliency similarity (SS) between motion saliency

MSi and ground-truth saliency GTi .
26: Assign binary label to OFi :

Quality Label =

{
1, if SS(MSi , GTi ) > γ

0, otherwise

27: end for
28: Step 2: Train Quality Filter (QF)
29: Train the binary classifier (QF) using high-quality labeled optical

flow maps (via ResNet50 backbone and MLP output).
30: QF classifies new optical flow maps as high or low quality.
31: Step 3: Generate Pseudo-GT for Video Sequence
32: for each frame Ii with high-quality optical flow do
33: Generate motion saliency MSi and color saliency CSi for

frame Ii using RGB SOD model.
34: Compute saliency similarity score (SS) between MSi and CSi .

35: Calculate pseudo-GT score for frame Ii :

pGTscorei = QF(OFi ) × SS(CSi , MSi )

36: If pGTscorei ≥ 0, retain frame Ii as high-quality pseudo-GT.
37: end for
38: Step 4: Refine Pseudo-GT Using CRF
39: Apply Conditional Random Fields (CRF) to refine the high-

quality pseudo-GTs obtained in Step 3.
40: Part 3: Target Domain Adaptation
41: Step 1: Adapt Target Domain using Generated Data
42: Combine the original training set with newly generated video

data (with pseudo-GT and SID maps).
43: Re-train RGB-D SOD model using this combined dataset.
44: Adjust model parameters to handle domain shift effectively.

EMTr [93], MFUR [94], LAFB [68], SPNet [69], SSL [70],
and C2DF [71]. For a fair comparison, we use either the code
implementations with default parameter settings or saliency
maps provided by the authors. Also, we have selected the
four most recent top-tier SOTA models as the target baseline
models (e.g., LAFB, C2DF, SSL, and SPNet), where we have
applied our approach over them to achieve performance gain.

As shown in Table II, targeted baseline models are re-trained
by the models’ original training datasets (NJUD and NLPR
or DUT-RGBD) and our newly-augmented Video8K with
common images, denoted by *. Experimental results show
that all targeted SOTA models promoted by our approaches
can achieve significant performance improvements over the
original versions, i.e., our method can make an average of
0.85%, 1.29%, 1.15%, and 1.6% performance improvement in
Fm metric of LAFB, C2DF, SSL, and SPNet compared with
the original versions, which proves the effectiveness of the
Video8K set to potentially boost SOTA model’ performance.

Further, we observed that the higher the performance of a
model trained with the original training set, the less improve-
ment it exhibits when retrained with the training set obtained
using our method. Conversely, the lower the performance of
a model trained with the original training set, the greater the
improvement it demonstrates when retrained with the training
set obtained using our method. This phenomenon can be
attributed to the diminishing returns effect, where models that
are already highly optimized benefit less from additional data
augmentation due to their existing proficiency. On the other
hand, models with lower initial performance have more room
for improvement, and the introduction of our enhanced training
data provides substantial benefits by addressing previously
unmet needs or gaps in the data. This observation indicates that
our method is particularly effective for models needing signif-
icant performance boosts, showcasing its value in improving
underperforming models and making them more robust across
various domains and scenarios. Qualitative results are illus-
trated in Fig. 9. We can find that both in specific scenes
(subfigure A) and normal scenes (subfigure B), our method
can generate more accurate saliency results than other SOTA
methods.

For the second part, to certify the effectiveness of our
approach in scenes with domain shift issues, we have
conducted four scalability experiments based on the three
targeted baseline models on three real-world testing sets BDD,
KITTI and CityScapes [19], which encompass a variety of
weather conditions, different times of the day, and urban
traffic patterns. Apart from the abovementioned experiment
(denoted by “+Video8K”), we added a selected BDD train-
ing set to newly re-train the targeted models (denoted by
“+BDD-TR”), and re-trained the model by the large-scale set
COME15K-TR (denoted by “+COME15K-TR”). As shown
in Table III, SOTA models trained on BDD (without domain
shift issue) perform the best on the real-world BDD, KITTI
and CityScapes testing sets, while models trained with orig-
inal data (denoted by “Original”) perform the worst. Our
augmented Video8K performing in the middle (better than
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TABLE IV
QUANTITATIVE COMPARISON WITH SOTA REPRESENTATIVE DOMAIN

ADAPTATION METHODS. THIS EXPERIMENT TAKES C2DF AS THE
TARGET MODEL. THE BEST RESULT IN EACH

COLUMN IS BOLD

“+COME15K-TR”) is that Video8K contains some similar
scenes with the real-world BDD, KITTI and CityScapes, and
has more diverse scenes than COME15K-TR, thus can slightly
mitigate the domain shift problem and slightly outperforms
“+COME15K-TR”, but not perform well as no domain shift
BDD training set. Qualitative results are illustrated in Fig. 10
(normal scenes v.s. specific scenes).

E. Comparisons With SOTA Representative Domain
Adaptation Methods

Our method’s performance was thoroughly compared
against several state-of-the-art (SOTA) domain adaptation
techniques, including UNIQUE [95], ADV-DA [96], Asy-
FOD [97], UCBS [98], across multiple datasets: STEREO,
NLPR, ReDweb-S, BDD-TE, and KITTI. The results,
as shown in Table IV, indicate that our method consistently
outperforms existing domain adaptation techniques across all
datasets and metrics. This is likely due to our method’s
ability to adapt well across different domains (e.g., stereo
traffic scenes), which showcases its robustness and flexibil-
ity. By leveraging videos’ spatiotemporal information, our
method effectively generates additional high-quality training
data, which enhances model performance even with domain
shifts.

F. Ablation Studies

1) Different Optical Flow Methods: In fact, a more pow-
erful optical flow tool could benefit overall performance.
In this study, we have employed four representative optical
flow approaches, including PWCNet [99], FlowNet 2.0 [100],
SPyNet [101] and RAFT [64]. According to the quantitative
results demonstrated in Table V-A, we chose RAFT in our
method, where this approach outperformed other competitors
in terms of all metrics, e.g., the F-m metric has been improved
from 0.907 (PWCNet) to 0.911 (RAFT) in NLPR set, showing
the effectiveness of the optical flow maps generated by RAFT.
Further, the performance results used by all these four optical
flow tools are marginally different, which shows the robustness
of our approach.

2) Threshold γ Adopted in QF: We have tested multiple
choices regarding γ (Eq. 3), and the exact results can be
found in Table V-B. As shown, the overall performance of our
method is moderately sensitive to the choice of γ . Specifically,
γ = 0.85 achieves the best result, and γ = 0.95 is inferior
to γ = 0.75, showing a larger γ may not always bring

performance gain. The main reason lies in: 1) when γ uses a
large value, the amount of available training data will be small,
where the model may be incompletely trained, and 2) when
γ chooses a very small value, the derived training data could
be redundant and will hinder the performance of the model.

3) Different Monocular Depth Estimation Methods:
Though the quality of monocular estimated depth (MED) is
inferior to our saliency informative depth (SID, Sec. III-B)
regarding the RGB-D SOD task, the quality of MED is also a
significant factor in the generation of SID (PART1 of Fig. 3).
We have conducted an extensive ablation study regarding five
monocular depth estimation methods, e.g., FastDepth [61],
Monodepth2 [62], LapDepth [102], MiDaS [60] to figure out
the monocular depth estimation method that contributes to our
SID most, and the detailed quantitative results can be found in
Table V-C. Compared with the other three methods, MiDaS
achieved the best results in all metrics, e.g., 0.723 (MiDaS)
vs. 0.720 (the latest SOTA LapDepth) in terms of F-m in
ReDweb-S set. Therefore, we have chosen MiDaS as the depth
estimation method.

Further, to prove the superiority of our SID compared to
MED towards the RGB-D SOD task, we have comprehensively
compared two representative SOTA monocular depth estima-
tion methods, e.g., LapDepth, and MiDaS. Results in Table VI
demonstrate that no matter on RGB-D SOD set ReDweb-S
with normal scenes or stereo set KITTI with specific scenes,
our SID can obtain the most superior saliency results compared
to MED, e.g., we have promoted the S-m of ReDweb-S and
KITTI from 0.715→0.719 and 0.824→0.829, respectively,
based on MiDaS.

4) Disscusion of Bringing in RGB SOD Datasets: During
Pseudo-GT generating procedure (see in Fig. 7), we have
utilized the pre-trained SOTA ISOD model, which is trained
by RGB SOD datasets to produce color saliency and motion
saliency. To verify the improvement of our approach is not
simply brought about by RGB SOD datasets, we have con-
ducted an extensive ablation study to prove it. Firstly, we only
pre-train the RGB branch of RGB-D ISOD SOTA models, e.g.,
C2DF, SSL, and SPNet, by RGB SOD datasets and DAVIS,
then load the pre-trained weights to train full RGB-D SOTA
using RGB-D ISOD datasets (the same parameters as RGB-D
ISOD SOTA models have set, denoted as “+PreRGB”)). As is
shown in Table VII, the C2DF model trained by our newly
augmented data without pre-trained RGB branch (denoted
as “+Ours”) outperforms the original models (denoted as
“C2DF”) and the models trained by RGB-D ISOD datasets
(“+PreRGB”) with pre-trained RGB branch using RGB SOD
datasets and DAVIS regarding all metrics on RGB-D sets
NLPR, STEREO and ReDweb-S with normal scenes, and
stereo sets BDD-TR and KITTI with specific scenes, e.g.,
0.592 (“C2DF”) vs. 0.705 (“+PreRGB”) vs. 0.829 (“+Ours”)
in terms of the S-m metric in the KITTI set, which proves that
the pre-training RGB branch can obtain performance gain than
the original model but is inferior to our augmented datasets.
Accordingly, it is reasonable to infer that RGB SOD datasets
do not bring about the improvement of our approach.

5) Disscusion of Quality Filter: We also applied a qual-
ity filter (QF, Sec. III-C) during the pseudo-GT generation
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TABLE V
A: COMPARISONS BETWEEN DIFFERENT OPTICAL FLOW METHODS; B: ABLATION STUDY REGRADING THRESHOLD γ (EQ. 3);

C: COMPARISONS BETWEEN DIFFERENT MONOCULAR DEPTH ESTIMATION METHODS. ALL THESE EXPERIMENTS
TAKE C2DF AS THE TARGETED MODEL

TABLE VI
QUANTITATIVE COMPARISONS BETWEEN THE MONOCULAR ESTIMATED

DEPTH (MED) AND SALIENCY INFORMATIVE DEPTH (SID) TOWARDS
THE RGB-D SOD TASK. THIS EXPERIMENT TAKES C2DF AS THE

TARGET MODEL. THE BEST RESULT IN EACH
COLUMN IS BOLD

TABLE VII
QUANTITATIVE COMPARISON RESULTS OF TARGET RGB-D SOTA

MODELS C2DF, SSL AND SPNET (ORIGINAL MODEL), +PRERGB
(FIRST PRE-TRAIN RGB BRANCH OF RGB-D SOTA MODELS

WITH RGB SOD DATASETS, THEN TRAIN FULL RGB-D
MODEL WITH RGB-D SOD DATASETS) AND +OURS

(TRAINING RGB-D SOTA MODELS WITH OUR
AUGMENTED DATASETS). THE BEST RESULT IN

EACH COLUMN IS BOLD

procedure (see Fig. 7), but not in the depth generation process
(see Fig. 6). The reasons are as follows. Firstly, the quality
filter is specifically designed to ensure the generation of
high-quality pseudo-ground truths (pseudo-GTs) by retaining
frames with high-quality optical flow maps and high consis-
tency of color-motion saliency. This approach is crucial for
pseudo-GTs because they directly impact the training effi-
cacy of the RGB-D SOD models. However, when generating

saliency informative depth maps, the primary goal is to
extract layer-separable clues from the optical flow, rather than
achieving precise depth layouts with rich details. The depth
generation process is designed to be more robust to variations
in the quality of optical flow maps because the optical flow
primarily provides the relative motion information needed for
saliency detection, rather than absolute depth accuracy.

By focusing on the essential motion information that dis-
tinguishes salient objects, the depth generation process can
tolerate some degree of noise or lower quality in the optical
flow maps. The subsequent fusion with RGB information in
the OFDNet further mitigates the impact of any low-quality
optical flow maps, ensuring that the generated depth maps
remain effective for the saliency detection task.

6) Disscusion of Practical Implications: Our method offers
significant practical benefits in the context of traffic scene anal-
ysis, particularly in improving the robustness of SOD models
when applied to diverse traffic environments. By leveraging
optical flow-based cues to generate saliency-informed depth,
our approach enhances the ability of models to distinguish sig-
nificant objects even in challenging dynamic traffic scenarios.
This capability can directly contribute to improving safety and
efficiency in traffic monitoring systems, such as autonomous
vehicles, traffic surveillance, and smart city infrastructure.
Additionally, the video-based data augmentation strategy we
propose allows for the creation of training datasets that better
reflect real-world variability, which is essential for the devel-
opment of more adaptive and reliable SOD models.

G. Limitations and Error Analysis

The primary limitations of our approach include data quality
issues and challenges in depth estimation. In terms of model
performance, while increasing training data generally boosts
accuracy, it eventually leads to diminishing returns due to
redundancy and gaps between generated and testing datasets.
Additionally, reliance on pseudo-ground truths can introduce
noise, impacting performance. Real-world factors like lighting,
weather, and sensor noise further affect video and depth
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map quality, complicating model reliability. Finally, optical
flow, a core component for depth estimation, struggles in
low-motion scenes and under adverse conditions. Integrating
semantic cues and temporal consistency could partially mit-
igate these issues, but achieving robust performance across
diverse scenarios remains challenging.

H. Ethical Considerations

Regarding ethical and privacy considerations, we utilize
publicly sourced or consented video data and have imple-
mented anonymization processes to protect individual privacy.
By ensuring that all data is either openly available or obtained
with proper consent, and by removing any identifiable infor-
mation, we address potential privacy concerns associated with
the use of optical flow and saliency maps derived from
real-world traffic videos. Consequently, there are no significant
data security or ethical issues related to our dataset.

V. CONCLUSION

This paper has introduced a data augmentation solution
that specifically addresses the domain shift problem in SOD
tasks for traffic scenes. Our method uniquely leverages optical
flow-based layer-separable cues to generate saliency-informed
depth. It exploits the spatiotemporal complementary nature
of video data to produce pseudo-GTs that enhance model
training. While our approach shows promise in specific con-
texts, it is essential to note that results may vary depending
on the characteristics of the target domain. By constructing
a video-based training set with diverse scenes, we enable
the re-training of off-the-shelf RGB-D SOD models, thereby
providing a method to mitigate domain shift challenges.

Crucially, by enhancing the adaptability and robustness
of SOD models in analyzing complex traffic scenes, our
approach has the potential to contribute to improvements
in traffic-related image analysis accuracy. However, further
validation in varied environments is necessary. In future work,
we plan to explore the integration of our method with 3D
traffic simulation models to improve the representation of
dynamic, real-world traffic scenarios. Additionally, hybrid
SOD approaches that combine both traditional and deep
learning-based techniques could be investigated to further
enhance model performance. These extensions could broaden
the applicability of our method and inspire future research in
the field of traffic image analysis.
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